860 resultados para Nmr-spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incubation of the model pollutant [U-14C]'-4-fluorobiphenyl (4FBP) in soil, in the presence and absence of biphenyl (a co-substrate), was carried out in order to study the qualitative disposition and fate of the compound using 14C-HPLC and 19F NMR spectroscopy. Components accounted for using the radiolabel were volatilization, CO2 evolution, organic solvent extractable and bound residue. Quantitative analysis of these data gave a complete mass balance. After sample preparation. 14C-HPLC was used to establish the number of 4FBP related components present in the organic solvent extract. 19F NMR was also used to quantify the organic extracts and to identify the components of the extract. Both approaches showed that the composition of the solvent extractable fractions comprised only parent compound with no metabolites present. As the 14C radiolabel was found to be incorporated into the soil organic matter this indicates that metabolites were being generated, but were highly transitory as incorporation into the SOM was rapid. The inclusion of the co-substrate biphenyl was to increase the overall rate of degradation of 4FBP in soil. The kinetics of disappearance of parent from the soil using the data obtained were investigated from both techniques. This is the first report describing the degradation of a fluorinated biphenyl in soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to prepare high surface area highly acidic catalysts, different weight loadings of ZrO2 were incorporated in the SBA-15 structures which are subsequently sulfated by treating in 0.25 M H2SO4. The catalysts were characterized by means of TEM, XRD, N-2 adsorption, and H-1 MAS NMR. Bronsted type acidities of sulfated zirconia included SBA-15 materials were identified by a sharp H-1 MAS NMR line at 10.6 ppm. The highest acidity was obtained in the 25 mol% ZrO2 included SBA-15 catalyst with a BET surface area of 246 m(2)/g.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In conventional milling, the aleurone layer is combined with the bran fraction. Studies indicate that the bran fraction of wheat contains the majority of the phytonutrients betaine and choline, with relatively minor concentrations in the refined flour. This present study suggests that the wheat aleurone layer (Triticum aestivum L. cv. Tiger) contains the greatest concentration of both betaine and choline (1553.44 and 209.80 mg/100 g of sample, respectively). The bran fraction contained 866.94 and 101.95 mg/100 g of sample of betaine and choline, respectively, while the flour fraction contained 23.30 mg/100 g of sample (betaine) and 28.0 mg/100 g of sample (choline). The betaine content for
the bran was lower, and the choline content was higher compared to previous studies, although it is known that there is large variation in betaine and choline contents between wheat cultivars. The ratio of betaine/choline in the aleurone fraction was approximately 7:1; in the bran, the ratio was approximately 8:1; and in the flour fraction, the ratio was approximately 1:1. The study further
emphasizes the superior phytonutrient composition of the aleurone layer.
INTRODUCTION
Wheat is a valuable source of betaine, choline (1, 2), B
vitamins, vitamin E, and a number of minerals, including iron,
zinc, magnesium, and phosphorus (3). Epidemiological studies
indicate that whole-grain consumption is protective against
several chronic diseases (4-12). It has not been fully elucidated
how whole-grain cereals or specific fractions (13) exert their
protective effect, but it is thought to be due to their content of
several nutrients associated with the reduced risk of disease.
Conventionally, whole grain is separated during milling into
bran, germ, and flour (14). The nutrient composition of these
fractions differ markedly; refined wheat flour contains approximately
50% less vitamins and minerals than whole-grain
flour (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half-life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato-protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone-related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N-heterocyclization and N-acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q-TOF-MS analysis has provided an important analytical platform to gather metabolic profile of sweroside.