933 resultados para Nitrogen functional groups


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed before sowing in April 2002. Five independent samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Soil samples were dried at 40°C and then segmented to a depth resolution of 5 cm giving six depth subsamples per core. All samples were analyzed independently and averaged values per depth layer are reported. Sampling locations were less than 30 cm apart from sampling locations in other years. Subsequently, samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Rarely present visible plant remains were removed using tweezers. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We estimated the relative contribution of atmospheric Nitrogen (N) input (wet and dry deposition and N fixation) to the epipelagic food web by measuring N isotopes of different functional groups of epipelagic zooplankton along 23°W (17°N-4°S) and 18°N (20-24°W) in the Eastern Tropical Atlantic. Results were related to water column observations of nutrient distribution and vertical diffusive flux as well as colony abundance of Trichodesmium obtained with an Underwater Vision Profiler (UVP5). The thickness and depth of the nitracline and phosphocline proved to be significant predictors of zooplankton stable N isotope values. Atmospheric N input was highest (61% of total N) in the strongly stratified and oligotrophic region between 3 and 7°N, which featured very high depth-integrated Trichodesmium abundance (up to 9.4×104 colonies m-2), strong thermohaline stratification and low zooplankton delta15N (~2 per mil). Relative atmospheric N input was lowest south of the equatorial upwelling between 3 and 5°S (27%). Values in the Guinea Dome region and north of Cape Verde ranged between 45 and 50%, respectively. The microstructure-derived estimate of the vertical diffusive N flux in the equatorial region was about one order of magnitude higher than in any other area (approximately 8 mmol m-2 d 1). At the same time, this region received considerable atmospheric N input (35% of total). In general, zooplankton delta15N and Trichodesmium abundance were closely correlated, indicating that N fixation is the major source of atmospheric N input. Although Trichodesmium is not the only N fixing organism, its abundance can be used with high confidence to estimate the relative atmospheric N input in the tropical Atlantic (r2 = 0.95). Estimates of absolute N fixation rates are two- to tenfold higher than incubation-derived rates reported for the same regions. Our approach integrates over large spatial and temporal scales and also quantifies fixed N released as dissolved inorganic and organic N. In a global analysis, it may thus help to close the gap in oceanic N budgets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three activated carbons with different surface chemical groups were used to analyse the influence of these groups on their adsorption capacities towards aromatic-type molecules whose adsorption is based on π-π interactions with surface arene centres. The three activated carbons studied were a low-functionalized carbon (Merck), an oxygen-rich carbon obtained by HNO3 oxidation of Merck, and a nitrogen-rich carbon also prepared from Merck by mild HNO3 oxidation followed by treatment with a dicyanodiamide/dimethyl formamide mixture at 300 °C. The nature of the surface chemical groups of the three activated carbons was investigated by both physical and chemical techniques (TPD, XPS, Boehm analysis and pH potentiometric titration). A systematic study of the adsorptions of a series of analogous aromatic adsorbates on the three activated carbons was carried out to study the adsorption mechanisms. In all cases the adsorption mechanism is based on π-π interactions between the aromatic moiety of the adsorbates and the arene centres of the graphite sheets. The differences in the normalized adsorption capacities of the adsorbents for a set of adsorbates indicate that the π-donor or π-withdrawing character of the functional groups have a clear influence on the basicity of the arene centres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen functionalization of a highly microporous activated carbon (BET surface area higher than 3000 m2/g) has been achieved using the following sequence of treatments: (i) chemical oxidation using concentrated nitric acid, (ii) amidation by acyl chloride substitution with NH4NO3 and (iii) amination by Hoffman rearrangement. This reaction pathway yielded amide and amine functional groups, and a total nitrogen content higher than 3 at.%. It is achieved producing only a small decrease (20%) of the starting microporosity, being most of it related to the initial wet oxidation of the activated carbon. Remarkably, nitrogen aromatic rings were also formed as a consequence of secondary cyclation reactions. The controlled step-by-step modification of the surface chemistry allowed to assess the influence of individual nitrogen surface groups in the electrochemical performance in 1 M H2SO4 of the carbon materials. The largest gravimetric capacitance was registered for the pristine activated carbon due to its largest apparent surface area. The nitrogen-containing activated carbons showed the highest surface capacitances. Interestingly, the amidated activated carbon showed the superior capacitance retention due to the presence of functional groups (such as lactams, imides and pyrroles) that enhance electrical conductivity through their electron-donating properties, showing a capacitance of 83 F/g at 50 A/g.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the surface heterogeneity and the surface mediation on the intermolecular potential energy for nitrogen adsorption on graphitized thermal carbon black (GTCB). The surface heterogeneity is modeled as the random distribution of effective carbonyl functional groups on the graphite surface. The molecular parameters and the discrete charges of this carbonyl group are taken from Jorgensen, et al. (J. Am. Chem. Soc., (1984) 106, 6638) while those for nitrogen (dispersive parameters and discrete charges) are taken from Murthy et al. (Mol. Phys., (1983) 50, 531) in our Grand Canonical Monte Carlo (GCMC) simulation. The solid surface mediation in the reduction of intermolecular potential energy between two fluid molecules was taken from a recent work by Do et al. (Langmuir, (2004) 20, 7623). Our simulation results accounting for the surface heterogeneity and surface mediation on intermolecular potential energy were compared with the experimental data of nitrogen at 77 and 90 K. The solid-fluid dispersive parameters are determined from the Lorentz-Berthelot (LB) rule. The fraction of the graphite surface covered with carbonyl functional groups was then derived from the consideration of the Henry constant, and for the data of Kruk et al. (Langmuir, (1999) 15, 1435) we have found that 1% of their GTCB surface is covered with effective carbonyl functional groups. The damping constant, due to surface mediation, was determined from the consideration of the portion of the adsorption isotherm where the first layer is being completed, and it was found to take a value of 0.0075. With these parameters, we have found that the GCMC simulation results describe the data over the complete range of pressure substantially better than any other MC models in the literature. The implication of this work is demonstrated with local adsorption isotherms of 10 and 20 A slit pores. One was obtained without allowance for surface mediation, while the other correctly accounts for these factors. The two local isotherms differ substantially, and the implication is that if we used incorrect local isotherms (i.e. without the surface mediation) the pore size distribution would be incorrectly derived.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-performance and low-cost bifunctional electrocatalysts play crucial roles in oxygen reduction and evolution reactions. Herein, a novel three-dimensional (3D) bifunctional electrocatalyst was prepared by embedding CoO nanoparticles into nitrogen and sulfur co-doped carbon nanofiber networks (denoted as CoO@N/S-CNF) through a facile approach. The carbon nanofiber networks were derived from a nanostructured biological material which provided abundant functional groups to nucleate and anchor nanoparticles while retaining its interconnected 3D porous structure. The composite possesses a high specific surface area and graphitization degree, which favors both mass transport and charge transfer for electrochemical reaction. The CoO@N/S-CNF not only exhibits highly efficient catalytic activity towards oxygen reduction reaction (ORR) in alkaline media with an onset potential of about 0.84 V, but also shows better stability and stronger resistance to methanol than Pt/C. Furthermore, it only needs an overpotential of 1.55 V to achieve a current density of 10 mA cm-2, suggesting that it is an efficient electrocatalyst for oxygen evolution reaction (OER). The ΔE value (oxygen electrode activity parameter) of CoO@N/S-CNF is calculated to be 0.828 V, which demonstrates that the composite could be a promising bifunctional electrocatalyst for both ORR and OER.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nitrogen variations at different spatial scales and integrated across functional groups were addressed for lowland tropical forests in the Brazilian Amazon as follows: (1) how does N availability vary across the region over different spatial scales (regional x landscape scale); ( 2) how are these variations in N availability integrated across plant functional groups ( legume 9 non-legume trees). Leaf N, P, and Ca concentrations as well the leaf N isotope ratios (delta(15)N) from a large set of legume and non-legume tree species were measured. Legumes had higher foliar N/Ca ratios than non-legumes, consistent with the high energetic costs in plant growth associated with higher foliar P/Ca ratios found in legumes than in non-legumes. At the regional level, foliar delta(15)N decreased with increasing rainfall. At the landscape level, N availability was higher in the forests on clayey soils on the plateau than in forests on sandier soils. The isotope as well as the non-isotope data relationships here documented, explain to a large extent the variation in delta(15)N signatures across gradients of rainfall and soil. Although at the regional level, the precipitation regime is a major determinant of differences in N availability, at the landscape level, under the same precipitation regime, soil type seems to be a major factor influencing the availability of N in the Brazilian Amazon forest.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Siliceous MCM-41 samples were modified by silylation using trimethylchlorosilane (TMCS). The surface coverage of functional groups was studied systematically in this work. The role of surface silanol groups during modification was evaluated using techniques of FTIR and Si-29 CP/MAS NMR. Adsorption of water and benzene on samples of various hydrophobicities was measured and compared. It was found that the maximum degree of surface attachments of trimethylsilyl (TMS) groups was about 85%, corresponding to the density of TMS groups of 1.9 per nm(2). The degree of silylation is found to linearly increase with increasing pre-outgassing temperature prior to silylation. A few types of silanol groups exist on MCM-41 surfaces, among which both free and geminal ones are responsible for active silylation. Results of water adsorption show that aluminosilicate MCM-41 materials are more or less hydrophilic, giving a type IV isotherm, similar to that of nitrogen adsorption, whereas siliceous MCM-41 are hydrophobic, exhibiting a type V adsorption isotherm. The fully silylated Si-MCM-41 samples are more hydrophobic giving a type III adsorption isotherm. Benzene adsorption on all MCM-41 samples shows type IV isotherms regardless of the surface chemistry. Capillary condensation occurs at a higher relative pressure for the silylated MCM-41 than that for the unsilylated sample, though the pore diameter was found reduced markedly by silylation. This is thought attributed to the diffusion constriction posed by the attached TMS groups. The results show that the surface chemistry plays an important role in water adsorption, whereas benzene adsorption is predominantly determined by the pore geometry of MCM-41.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Structural and surface property changes of macadamia nut-shell (MNS) char upon activation and high temperature treatment (HTT) were studied by high-resolution nitrogen adsorption, diffuse reflectance infra-red Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. It is found that activation of MNS char can be divided into the low extent activation which may involve the reactions of internal oxygen-containing groups and leads to the formation of comparatively uniform micropores, and the high extent activation which induces reactions between carbon and activating gas and produces a large amount of micropores. The surface functional groups (SFGs) basically increase with the increase of activation extent, but high extent activation preferentially increases the amount of -C-O and -C=O. HTT in air for a short tithe at a high temperature (1173 K) greatly increases the micropore volume and the amounts of SFGs. By appropriately choosing the activation and HTT conditions, it is possible to control both the textural structure and the type and amounts of SFG. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mestrado Engenharia Química. Ramo Tecnologias de Protecção Ambiental

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Questions Soil properties have been widely shown to influence plant growth and distribution. However, the degree to which edaphic variables can improve models based on topo-climatic variables is still unclear. In this study, we tested the roles of seven edaphic variables, namely (1) pH; (2) the content of nitrogen and of (3) phosphorus; (4) silt; (5) sand; (6) clay and (7) carbon-to-nitrogen ratio, as predictors of species distribution models in an edaphically heterogeneous landscape. We also tested how the respective influence of these variables in the models is linked to different ecological and functional species characteristics. Location The Western Alps, Switzerland. Methods With four different modelling techniques, we built models for 115 plant species using topo-climatic variables alone and then topo-climatic variables plus each of the seven edaphic variables, one at a time. We evaluated the contribution of each edaphic variable by assessing the change in predictive power of the model. In a second step, we evaluated the importance of the two edaphic variables that yielded the largest increase in predictive power in one final set of models for each species. Third, we explored the change in predictive power and the importance of variables across plant functional groups. Finally, we assessed the influence of the edaphic predictors on the prediction of community composition by stacking the models for all species and comparing the predicted communities with the observed community. Results Among the set of edaphic variables studied, pH and nitrogen content showed the highest contributions to improvement of the predictive power of the models, as well as the predictions of community composition. When considering all topo-climatic and edaphic variables together, pH was the second most important variable after degree-days. The changes in model results caused by edaphic predictors were dependent on species characteristics. The predictions for the species that have a low specific leaf area, and acidophilic preferences, tolerating low soil pH and high humus content, showed the largest improvement by the addition of pH and nitrogen in the model. Conclusions pH was an important predictor variable for explaining species distribution and community composition of the mountain plants considered in our study. pH allowed more precise predictions for acidophilic species. This variable should not be neglected in the construction of species distribution models in areas with contrasting edaphic conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Työssä tutkittiin typpihapon soveltuvuutta nikkelin takaisinuuttoon. Tarkoituksena oli selvittää, millä typpihapon konsentraatioilla orgaaninen faasi, joka koostuu Versatic 10 uuttoreagenssista ja alifaattisesta laimentimesta, alkaa nitrautua tai hapettua ja mitkä ovat mahdolliset sivureaktiot. Lisäksi tutkittiin rikkihapon ja eräiden orgaanisten aineiden kontaminaation vaikutusta uuttoliuokseen. Kirjallisuusosassa kartoitetaan mahdollisten nitrautumisreaktioiden mekanismit, sekä kuvataan laimentimen, uuttoreagenssin ja mahdollisten reaktiotuotteiden ominaisuuksia, sekä niiden mahdollisessa muodostumisessa syntyviä riskejä. Orgaanisen faasin kestotesteissä tutkittavia muuttujia olivat typpi- ja rikkihapon konsentraatio, sekoitusaika, lämpötila, avoin tai suljettu astia sekä vieraiden aineiden kontaminaatio. Kontaminaatiota aiheuttavien orgaanisten materiaalien funktionaaliset ryhmät olivat hydroksi-, karbonyyli- ja amiiniryhmät, joiden lisäksi tutkittiin syklisen yhdisteen kontaminaatiota. Analyyseissä käytettiin FT-IR- spektroskopiaa, jolla tutkittiin reagenssin funktionaalisen ryhmän reaktioita ja uusien ryhmien muodostumista, sekä seurattiin selkeytyksessä erottumattomien typpiyhdisteiden määrää ja laatua orgaanisessa faasissa. Uuttofaasin koostumuksen muutosta seurattiin myös mittaamalla leimahduspisteen muutosta.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite the fact that boranes are frequently used in amide reductions, the reaction mechanisms of the involved are note well known. This work presents the results of a bibliographic search on probable amide reduction mechanisms and an analysis of the existing literature. Steric and electronic effects were considered in light of reactivity since it could be concluded that the formation of intermediates and products depends mainly on the substitution patterns of both the boron and nitrogen atoms. Otherwise, results described in the literature for the reactions of boranes, sodium borohydride, lithium aluminum hydride, alkylboranes or haloboranes with others functional groups such as carboxylic acids, esters, ketones and alkenes were analysed with the aim to obtain something about the N-substituted amide reactions employing boranes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Agroindustrial waste in general presents significant levels of nutrients and organic matter and has therefore been frequently put to agricultural use. In this context, the objective of this study was to determine the chemical composition, nitrogen, phosphorus, potassium, calcium, magnesium and carbon content, as well as the qualitative characteristics through Fourier transform infrared spectroscopy of four samples of poultry litter and one sample of cattle manure, from the southwestern region of Paraná, Brazil. Results revealed that, in general, the poultry litter presented higher amount of nutrients and carbon than the cattle manure. The infrared spectra allowed identification of the functional groups present and the differences in degree of sample humification. The statistical treatment confirmed the quantitative and qualitative differences revealed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study the BEST7 software was employed to quantify different classes of functional groups and to model the proton titration behavior of humic substances. To illustrate the process, the Suwannee River fulvic acid of the IHSS (International Humic Substances Society) was used. Five categories - two classes of phenolic groups (phenol and cathecol), two classes of carboxylic groups (benzoic and phtalic) and the combination between them (salicylic) - of oxygenated groups were considered as being responsible for the potentiometric behavior of the sample and were quantitatively determined. The most and the least abundant groups were cathecol (3.300 ± 0.010 mmol g-1) and phenol (1.225 ± 0.070 mmol g-1), respectively. The estimated equilibrium constants were also determined and were in good agreement with the literature values for phenol and cathecol groups and for benzoic, phtalic and salicylic acids. Distribution diagrams of the species were generated with the software SPE and SPEPLOT.