985 resultados para Nitrate reductase enzyme
Resumo:
A stable, well-behaved self-assembled monolayer (SAM) of viologen-functionalized thiol was used to immobilize and electrically connect horseradish peroxidase (HRP) at gold electrode. Viologen groups in SAMs facilitated the electron transfer from the electrode to the protein active site so that HRP exhibited a quasi-reversible redox behavior. HRP adsorbed in the SAMs is very stable, and close to a monolayer with the surface coverage of 6.5 x 10(-11) mol/cm(2). The normal potential of HRP is -580 mV vs Ag/AgCl corresponding to ferri/ferro active center and the standard electron transfer rate constant is 3.41 s(-1) in 0.1 M phosphate buffer solution (pH 7.1). This approach shows a great promise for designing enzyme electrodes with other redox proteins and practical use in tailoring a variety of amperometric biosensor devices. Copyright (C) 1997 Elsevier Science Ltd.
Resumo:
The complete sequences of the dsrA and dsrB genes coding for the α− and β−subunits, respectively, of the sulphite reductase enzyme in Desulfovibrio desulfuricans were determined. Analyses of the amino acid sequences indicated a number of serohaem/Fe4S4 binding consensus sequences whilst predictive secondary structure analysis revealed a similar pattern of α−helix and β−strand structures between the two subunits which was indicative of gene duplication.
Resumo:
Among the nutrients that are essential for the biological nitrogen fixation by soybean plants, molybdenum stands out for being a cofactor of the nitrate reductase, affecting enzymatic activity and, consequently, the nodulation process. The research had as objective to evaluate the effects of molybdenum application on soybean nodulation and nitrate reductase activity. The experiment was conduced in greenhouse, sowing soybean in 12 L pots, with two plants per plot. The treatments consisted of two application via (with the seeds and leaf dressing) and two molybdenum doses (12 and 24 g ha(-1) with the seeds; 30 and 60 g ha(-1) leaf dressing) in ammonium molybdate form, plus the control. The number and dry mass of nodules and nitrogen content in soybean leaves were evaluated. Samples of leaves for the evaluation of nitrate reductase activity were taken at 10 a.m. and 10 p.m. It was concluded that soybean nodulation is affected by Mo dose and application via, resulting in higher number and weight of nodules when it is applied with the seeds. The enzymatic activity of the nitrate reductase is influenced by Mo fertilization and it is higher for leaf dressing with the double of the recommended dose.
Resumo:
An understanding of isoniazid (INH) drug resistance mechanism in Mycobacterium tuberculosis should provide significant insight for the development of newer anti-tubercular agents able to control INH-resistant tuberculosis (TB). The inhA-encoded 2-trans enoyl-acyl carrier protein reductase enzyme (InhA) has been shown through biochemical and genetic studies to be the primary target for INH. In agreement with these results, mutations in the inhA structural gene have been found in INH-resistant clinical isolates of M. tuberculosis, the causative agent of TB. In addition, the InhA mutants were shown to have higher dissociation constant values for NADH and lower values for the apparent first-order rate constant for INH inactivation as compared to wild-type InhA. Here, in trying to identify structural changes between wild-type and INH-resistant InhA enzymes, we have solved the crystal structures of wild-type and of S94A, I47T and I21V InhA proteins in complex with NADH to resolutions of, respectively, 2.3 angstrom, 2.2 angstrom, 2.0 angstrom, and 1.9 angstrom. The more prominent structural differences are located in, and appear to indirectly affect, the dinucleotide binding loop structure. Moreover, studies on pre-steady-state kinetics of NADH binding have been carried out. The results showed that the limiting rate constant values for NADH dissociation from the InhA-NADH binary complexes (k(off)) were eleven, five, and tenfold higher for, respectively, I21V, I47T and S94A INH-resistant mutants of InhA as compared to INH-sensitive wildtype InhA. Accordingly, these results are proposed to be able to account for the reduction in affinity for NADH for the INH-resistant InhA enzymes. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Ciências Biológicas (Botânica) - IBB
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Genotypic, developmental, and environmental factors converge to determine the degree of Crassulacean acid metabolism (CAM) expression. To characterize the signaling events controlling CAM expression in young pineapple (Ananas comosus) plants, this photosynthetic pathway was modulated through manipulations in water availability. Rapid, intense, and completely reversible up-regulation in CAM expression was triggered by water deficit, as indicated by the rise in nocturnal malate accumulation and in the expression and activity of important CAM enzymes. During both up-and down-regulation of CAM, the degree of CAM expression was positively and negatively correlated with the endogenous levels of abscisic acid (ABA) and cytokinins, respectively. When exogenously applied, ABA stimulated and cytokinins repressed the expression of CAM. However, inhibition of water deficit-induced ABA accumulation did not block the up-regulation of CAM, suggesting that a parallel, non-ABA-dependent signaling route was also operating. Moreover, strong evidence revealed that nitric oxide (NO) may fulfill an important role during CAM signaling. Up-regulation of CAM was clearly observed in NO-treated plants, and a conspicuous temporal and spatial correlation was also evident between NO production and CAM expression. Removal of NO from the tissues either by adding NO scavenger or by inhibiting NO production significantly impaired ABA-induced up-regulation of CAM, indicating that NO likely acts as a key downstream component in the ABA-dependent signaling pathway. Finally, tungstate or glutamine inhibition of the NO-generating enzyme nitrate reductase completely blocked NO production during ABA-induced up-regulation of CAM, characterizing this enzyme as responsible for NO synthesis during CAM signaling in pineapple plants.
Resumo:
Staphylococcus carnosus is a facultative anaerobic bacterium which features the cytoplasmic NreABC system. It is necessary for regulation of nitrate respiration and the nitrate reductase gene narG in response to oxygen and nitrate availability. NreB is a sensor kinase of a two-component system and represents the oxygen sensor of the system. It binds an oxygen labile [4Fe-4S]2+ cluster under anaerobic conditions. NreB autophosphorylates and phosphoryl transfer activates the response regulator NreC which induces narG expression. The third component of the Nre system is the nitrate receptor NreA. In this study the role of the nitrate receptor protein NreA in nitrate regulation and its functional and physiological effect on oxygen regulation and interaction with the NreBC two-component system were detected. In vivo, a reporter gene assay for measuring expression of the NreABC regulated nitrate reductase gene narG was used for quantitative evaluation of NreA function. Maximal narG expression in wild type S. carnosus required anaerobic conditions and the presence of nitrate. Deletion of nreA allowed expression of narG under aerobic conditions, and under anaerobic conditions nitrate was no longer required for maximal induction. This indicates that NreA is a nitrate regulated inhibitor of narG expression. Purified NreA and variant NreA(Y95A) inhibited the autophosphorylation of anaerobic NreB in part and completely, respectively. Neither NreA nor NreA(Y95A) stimulated dephosphorylation of NreB-phosphate, however. Inhibition of phosphorylation was relieved completely when NreA with bound nitrate (NreA•[NO3-]) was used. The same effects of NreA were monitored with aerobically isolated Fe-S-less NreB, which indicates that NreA does not have an influence on the iron-sulfur cluster of NreB. In summary, the data of this study show that NreA interacts with the oxygen sensor NreB and controls its phosphorylation level in a nitrate dependent manner. This modulation of NreB-function by NreA and nitrate results in nitrate/oxygen co-sensing by an NreA/NreB sensory unit. It transmits the regulatory signal from oxygen and nitrate in a joint signal to target promoters. Therefore, nitrate and oxygen regulation of nitrate dissimilation follows a new mode of regulation not present in other facultative anaerobic bacteria.
Resumo:
When Escherichia coli was grown in the presence of tungstate, inactive forms of two molybdoenzymes, nitrate reductase and formate dehydrogenase, accumulated and were converted to their active forms upon incubation of cell suspensions with molybdate and chloramphenicol. The conversion to the active enzymes did not occur in cell extracts. When incubated with [(99)Mo]molybdate and chloramphenicol, the tungstate-grown cells incorporated (99)Mo into protein components which were released from membranes by procedures used to release nitrate reductase and formate dehydrogenase and which migrated with these activities on polyacrylamide gels. Although neither activity was formed during incubation of the crude extract with molybdate, (99)Mo was incorporated into protein components which were released from the membrane fraction under the same conditions and were similar to the active enzymes in their electrophoretic properties. The in vitro incorporation of (99)Mo occurred specifically into these components and was equal to or greater than the amount incorporated in vivo under the same conditions. Molybdenum in preformed, active nitrate reductase and formate dehydrogenase did not exchange with [(99)Mo]molybdate, demonstrating that the observed incorporation depended on the demolybdo forms of the enzymes. We conclude that molybdate may be incorporated into the demolybdo forms both in vivo and in vitro; some unknown additional factor or step, required for active enzyme formation, occurs in vivo but not in vitro under the conditions employed.