970 resultados para Nervous-system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to recent molecular studies, the Acoela are the earliest extant bilaterian group. Their nervous system displays a striking variety of patterns. The aim of the present investigation was to study the variability of the nervous system in a monophyletic group of the Acoela. Six species of Paraphanostoma were chosen for the study. Using immunocytochemical methods and confocal scanning laser microscopy, the immunoreactive patterns of serotonin (5-HT) and the neuropeptide GYIRFamide were described in detail. The study has demonstrated that the brains in Paraphanostoma species, although diverse in detail, still follow the same general pattern. 18S rDNA sequences were used to generate a hypothesis of the phylogeny within the group. Characters of the nervous system revealed in this study were coded and analysed together with 18S rDNA data. Several synapomorphies in the nervous system characters were identified. However, numerous parallelisms in the nervous system evolution have occurred. Data obtained demonstrate that the genus Paraphanostoma is closely related to Childia and should belong to the same family, Childiidae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Interleukin-17A (IL-17A) is the founding member of a novel family of inflammatory cytokines that plays a critical role in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). IL-17A signals through its receptor, IL-17RA, which is expressed in many peripheral tissues; however, expression of IL-17RA in the central nervous system (CNS) and its role in CNS inflammation are not well understood. Methods: EAE was induced in C57Bl/6 mice by immunization with myelin oligodendroglial glycoprotein. IL-17RA expression in the CNS was compared between control and EAE mice using RT-PCR, in situ hybridization, and immunohistochemistry. Cell-type specific expression was examined in isolated astrocytic and microglial cell cultures. Cytokine and chemokine production was measured in IL-17A treated cultures to evaluate the functional status of IL-17RA. Results: Here we report increased IL-17RA expression in the CNS of mice with EAE, and constitutive expression of functional IL-17RA in mouse CNS tissue. Specifically, astrocytes and microglia express IL-17RA in vitro, and IL-17A treatment induces biological responses in these cells, including significant upregulation of MCP-1, MCP-5, MIP-2 and KC chemokine secretion. Exogenous IL-17A does not significantly alter the expression of IL-17RA in glial cells, suggesting that upregulation of chemokines by glial cells is due to IL-17A signaling through constitutively expressed IL-17RA. Conclusion: IL-17RA expression is significantly increased in the CNS of mice with EAE compared to healthy mice, suggesting that IL-17RA signaling in glial cells can play an important role in autoimmune inflammation of the CNS and may be a potential pathway to target for therapeutic interventions. © 2009 Sarma et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enteric nervous system (ENS) in the gut contains a particularly high concentration of nerve cells, and effectively functions as an independent 'minibrain'. Interactions between nerve, endocrine, immune and other cell types allow the sophisticated regulation of normal gut physiology. They can also bring about a co-ordinated response to parasitic infection, possibly leading to expulsion of the parasite. In this review, Derek McKay and Ian Fairweather will consider, in brief, data pertaining to changes in the ENS following intestinal helminth infections and speculate on the role that these alterations may have in the expulsion of the parasite burden and the putative ability of the parasite to modulate these events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The localization and distribution of glutamate-like immunoreactivity (IR) in the nervous system of both the cestode Mesocestoides corti and the trematode Fasciola hepatica has been determined by an indirect immunofluorescent technique, in conjunction with confocal scanning laser microscopy (CSLM). Immunostaining was widespread in the central (CNS) and peripheral (PNS) nervous systems of both species examined. In the CNS, IR was evident in nerve cells and fibres in the cerebral ganglia, the cerebral commissure and the dorsal, ventral and longitudinal nerve cords. In the peripheral nervous system (PNS) of M. corti, IR was apparent in nerve plexuses associated with the subtegmental musculature and the musculature associated with the anteriorly positioned suckers. In F. hepatica, IR was evident in the innervation of both the oral and the ventral suckers, In the reproductive system of F. hepatica, glutamate-IR was observed around the ootype/Mehlis' gland complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The localization and distribution of SALMFamide (S1)-like immunoreactivity (IR), was determined at both the cellular and subcellular level in the central nervous system (CNS) of the nematode roundworm Ascaris suum. The techniques of indirect immunofluorescence in conjunction with confocal scanning laser microscopy and post-embedding, IgG-conjugated colloidal gold immunostaining were used, respectively. Immunostaining was widespread in the CNS of adult A. suum, with immunoreactivity (IR) being localized in nerve cells and fibres in the ganglia associated with the anterior nerve ring and in the main nerve cords and their commissures. At the subcellular level, gold labeling of peptide was localized exclusively over dense-cored vesicles within nerve cell bodies, nerve axons and nerve terminals of the neuropile of the anterior nerve ring, main ganglia and nerve cords in the CNS. Double-labeling demonstrated an apparent co-localization of S1- and FMRFamide-IR-together IR-together with S1- and pancreatic polypeptide (PP)-IR in the same dense-cored vesicles. Antigen preabsorption experiments indicated little cross-reactivity, if any, between the three antisera; indeed, neither FMRFamide nor PP antigens abolished S1 immunostaining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The localization and distribution of SALMFamide immunoreactivity (IR), SI(GFNSALMFamide), in the nervous system of both the adult and larval stages of the trematode Schistosoma mansoni has been determined by an indirect immunofluorescent technique in conjunction with confocal scanning laser microscopy (CSLM). Immunostaining was widespread in the nervous system of adult male and female S. mansoni. In the central nervous system (CNS), IR was evident in nerve cells and fibres in the anterior ganglia, cerebral commissure and dorsal and ventral nerve cords. In the peripheral nervous system (PNS), IR was apparent in nerve plexuses associated with the subtegmental musculature, oral and ventral suckers, the lining of the gynaecophoric canal, and in fine nerve fibres innervating the dorsal tubercles of the male worm. In the reproductive system of male and female worms, S1-IR was only observed around the ootype/Mehlis' gland complex in the female. Immunostaining was also evident in the nervous system of both miracidium and cercarial larval stages. A post-embedding, IgG-conjugated colloidal gold immunostaining technique was employed to examine the subcellular distribution of SALMFamide-IR in the CNS of S. mansoni. Gold labelling of peptide was localized over dense-cored vesicles within nerve cell bodies and fibres constituting the neuropile of the anterior ganglia, cerebral commissure and nerve cords of the CNS. Antigen pre-absorption studies indicated that the results obtained do suggest S1-like immunostaining and not cross-reactivity with other peptides, in particular FMRFamide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The localization and distribution of the serotoninergic components of the nervous system in the hydatid organism, Echinococcus granulosus, were determined by immunocytochemical techniques in conjunction with confocal scanning laser microscopy (CSLM). The distribution of serotonin immunoreactivity (IR) paralleled that previously described for cholinesterase activity, although it was more widespread. Nerve cell bodies and nerve fibres immunoreactive for 5-HT were present throughout the central nervous system (CNS), occurring in the paired lateral, posterior lateral and rostellar ganglia, their connecting commissures and nerve rings in the scolex and in the ten longitudinal nerve cords that run posteriorly throughout the body of the worm. A large population of nerve cell bodies was associated with the lateral nerve cords. In the peripheral nervous system (PNS), immunoreactive nerve fibres occurred in well-developed nerve plexuses innervating the somatic musculature and the musculature of the rostellum and suckers. The genital atrium and associated reproductive ducts were richly innervated with serotoninergic nerve cell bodies and nerve fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A post-embedding immunogold technique has been used to examine the subcellular distribution of immunoreactivities to vertebrate pancreatic polypeptide (PP) and to the invertebrate peptide, FMRFamide within the central nervous system (CNS) of the nematode, Ascaris suum. Gold labelling of peptide was localized exclusively over dense-cored vesicles within nerve cell bodies, nerve axons and nerve terminals of the main ganglia and nerve cords in the CNS. Double-labelling of peptides demonstrated an apparent co-localization of PP and FMRFamide immunoreactivities in the same dense-cored vesicles, although populations of dense-cored vesicles that labelled solely for FMRFamide were also evident. Antigen preabsorption studies indicated little or no cross-reactivity between the two antisera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A post-embedding immunogold technique was used to examine the subcellular distribution of immunoreactivities to the invertebrate peptide, FMRFamide, and to vertebrate pancreatic polypeptide (PP) within the central nervous system of the trematode, Fasciola hepatica. Gold labeling of peptide was localised exclusively over both dense-cored and ellipsoidal electron-dense vesicles (with a homogeneous matrix) present within nerve cell bodies, small and 'giant' nerve processes of the neuropile in the cerebral ganglia and transverse commissure, as well as in the main longitudinal nerve cords. Double labeling demonstrated an apparent co-localisation of FMRFamide and PP immunoreactivities in the same dense-cored vesicles, although populations of ellipsoidal electron-dense vesicles that labeled solely for FMRFamide were also evident. Antigen pre-absorption studies indicated little, if any, cross-reactivity of the two antisera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The localization and distribution of neuropeptides and an indoleamine (serotonin or 5-hydroxytryptamine) in the enteric nervous system (ENS) of the pig roundworm, Ascaris suum, have been determined by the application of an indirect immunofluorescence technique in conjunction with confocal scanning laser microscopy. Whole-mount preparations of pharyngeal, intestinal and rectal regions were screened with antisera to 23 vertebrate peptides, 2 invertebrate peptides and serotonin(= 5-HT). Positive immunoreactivity (IR) was obtained with antisera to pancreatic polypeptide (PP), peptide YY (PYY), FMRFamide, gastrin and serotonin. The only IR observed in the ENS was that evident in the nerve supply to the pharynx and rectal region; no IR was associated with any region of the intestine. The most extensive patterns of IR occurred with antisera to PW, FMRFamide and serotonin. In the pharyngeal component of the ENS, IR was evident in the lateral and dorsal longitudinal pharyngeal nerves, pharyngeal commissures, nerve plexus, and associated nerve cells and fibres. In contrast, the distribution of IR to the PP and gastrin antisera was more restricted and displayed a lower intensity of immunostaining. The other component of the ENS, the rectal enteric system, only yielded immunostaining to FMRFamide. The possible role of neuropeptides and serotonin in the nutritional biology of nematodes is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The localisation and distribution of neuropeptides in the peripheral nervous system of the pig roundworm Ascaris suum have been determined by an indirect immunofluorescence technique in conjunction with confocal microscopy. Of the 31 antisera tested, immunostaining was obtained only with antisera to peptide YY (PYY), pancreatic polypeptide (PP) and FMRFamide. Immunostaining for PYY and FMRFamide was evident in the amphidial and papillary ganglia associated with the anterior nerve ring and in the nerves from these ganglia that terminated in sensory receptors within the buccal lips of the parasite. The only peptide immunoreactivity (IR) observed in the reproductive system of either sex was that evident in the nerve supply to the distal region of the vagina in the female worm. It took the form of a well-developed plexus of parallel nerve fibres, cross-connectives and looped commissures. The nerve net diminished in the more proximal region of the vagina. PP-IR was less intense than that for PYY and FMRFamide and was more restricted in distribution, being confined to a small number of nerve fibres in the nerve supply to the vagina; it did not occur in the nerves supplying the anterior sensory receptors. The possible roles of neuropeptides in the sensory and reproductive biology of nematodes are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific antisera, directed against the highly conserved C-terminal hexapeptide amide of mammalian pancreatic polypeptide (PP) and the invertebrate peptide FMRFamide, have been used in conjunction with post-embedding, IgG-conjugated colloidal gold immunostaining to demonstrate peptide immunoreactivity at subcellular level in the nervous system of adult Diclidophora merlangi. Gold labelling revealed that immunoreactivity for PP and FMRFamide was localized exclusively in dense-cored vesicles occupying the majority of axons in the central nervous system. Double-labelling demonstrated an apparent co-localization of PP and FMRFamide in the same dense-cored vesicles. Antigen preabsorption experiments indicated cross-reactivity of the two antisera as unlikely, and that some if not all of the PP/FMRFamide immunostaining in the parasite was due to a neuropeptide F-like peptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The localization and distribution of neuropeptides in the central nervous system of the pig roundworm, Ascaris suum, have been determined by an indirect immunofluorescence technique in conjunction with confocal microscopy. Antisera to 25 vertebrate peptides and two invertebrate peptides were used to screen the worm for immunoreactivity (IR). Immunostaining was obtained with antisera to pancreatic polypeptide (PP), peptide YY (PYY), neuropeptide Y (NPY), gastrin, cholecystokinin (CCK), substance P (SP), atrial natriuretic peptide (ANP), salmon gonadotropin-releasing hormone (SGnRH), mammalian gonadotropin-releasing hormone (MGnRH), chromogranin A (CGA) and FMRFamide. The most extensive patterns of IR occurred with antisera to PYY, FMRFamide and gastrin. IR was evident in nerve cells and fibres in the ganglia associated with the anterior nerve ring and in the main nerve cords and their commissures; IR to FMRFamide also occurred in the posterior nerve ring. Immunostaining for the other peptides was confined to the nerve cords, with the number of immunoreactive nerve fibres varying from peptide to peptide.