865 resultados para Neighbourhood deprivation
Resumo:
Astrocytes play a key role in the neurometabolic coupling through the glycogen metabolism and the ''Astrocyte-Neuron Lactate Shuttle'' (ANLS). We previously reported that brain glycogen metabolism was affected by sleep deprivation (SD). Therefore, it is of prime interest to determine if a similar sleep loss also affects the ANLS functioning in astrocytes. To address this issue, we sleep deprived transgenic mice expressing the GFP under the control of the GFAP promoter and in which astrocytes can be isolated by FACS. The levels of expression of genes related to ANLS were assessed by qRT-PCR in the GFP-positive cells (GFPþ). The FVB/NTg( GFAP-GFP)Mes14/j mice were weaned at P20-P21 and underwent an instrumental 6 h SD at P23-P27. The SD was realized using the ''CaResS'' device which has been designed to minimize stress during SD. Control group corresponds to undisturbed mice. At the end of SD, mice were sacrificed and their cerebral cortex was rapidly dissected, cut in small pieces and enzymatically digested. After cell dissociation, GFPþ and GFP- cells were sorted by FACS and treated for RNA extraction. A quantitative RTPCR was realized using specific probes against different genes involved in ANLS. Results indicate that genes encoding the LDHb, the GLT1, the alpha2 subunit of the Na/KATPase pump as well as the GLUT1, were significantly increased in the GFPþ cells from SD mice. No significant change was observed in the GFP- cells from the same group. These results indicate that this approach is suitable to determine the transcriptional signature of SD in glial cells from juvenile animals. They also indicate that sleep loss induces transcriptional changes of genes involved in ANLS specifically in astrocytes. This could suggest that an adaptation of the ANLS at the transcriptional levels exists in pathophysiological conditions where neuronal activity is enhanced.
Resumo:
The administration of selective serotonin reuptake inhibitors (SSRIs) typically used as antidepressants increases alcohol consumption after an alcohol deprivation period in rats. However, the appearance of this effect after the treatment with selective noradrenaline reuptake inhibitors (SNRIs) has not been studied. In the present work we examined the effects of a 15-d treatment with the SNRI atomoxetine (1, 3 and 10 mg/kg, i.p.) in male rats trained to drink alcohol solutions in a 4-bottle choice test. The treatment with atomoxetine (10 mg/kg, i.p.) during an alcohol deprivation period increased alcohol consumption after relapse. This effect only lasted one week, disappearing thereafter. Treatment with atomoxetine did not cause a behavioral sensitized response to a challenge dose of amphetamine (1.5 mg/kg, i.p.), indicating the absence of a supersensitive dopaminergic transmission. This effect is markedly different from that of SSRI antidepressants that produced both long-lasting increases in alcohol consumption and behavioral sensitization. Clinical implications are discussed.
Resumo:
Sleep deprivation (SD) results in increased electroencephalographic (EEG) delta power during subsequent non-rapid eye movement sleep (NREMS) and is associated with changes in the expression of circadian clock-related genes in the cerebral cortex. The increase of NREMS delta power as a function of previous wake duration varies among inbred mouse strains. We sought to determine whether SD-dependent changes in circadian clock gene expression parallel this strain difference described previously at the EEG level. The effects of enforced wakefulness of incremental durations of up to 6 h on the expression of circadian clock genes (bmal1, clock, cry1, cry2, csnk1epsilon, npas2, per1, and per2) were assessed in AKR/J, C57BL/6J, and DBA/2J mice, three strains that exhibit distinct EEG responses to SD. Cortical expression of clock genes subsequent to SD was proportional to the increase in delta power that occurs in inbred strains: the strain that exhibits the most robust EEG response to SD (AKR/J) exhibited dramatic increases in expression of bmal1, clock, cry2, csnkIepsilon, and npas2, whereas the strain with the least robust response to SD (DBA/2) exhibited either no change or a decrease in expression of these genes and cry1. The effect of SD on circadian clock gene expression was maintained in mice in which both of the cryptochrome genes were genetically inactivated. cry1 and cry2 appear to be redundant in sleep regulation as elimination of either of these genes did not result in a significant deficit in sleep homeostasis. These data demonstrate transcriptional regulatory correlates to previously described strain differences at the EEG level and raise the possibility that genetic differences underlying circadian clock gene expression may drive the EEG differences among these strains.
Resumo:
STUDY OBJECTIVES: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. DESIGN: 6-hour instrumental sleep deprivation (TSD). SETTING: Animal sleep research laboratory. PARTICIPANTS: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. INTERVENTIONS: Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. MEASUREMENTS AND RESULTS: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. CONCLUSIONS: This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.
Resumo:
Effects of sex, host-plant deprivation and presence of conspecific immatures on the cannibalistic behavior of wild Ascia monuste orseis (Godart) (Lepidoptera, Pieridae). The specialist cabbage caterpillar Ascia monuste orseis (Lepidoptera, Pieridae) feeds on plants of the Brassicaceae family, but may eventually ingest conspecific eggs and larvae during the larval stage. The present study examines feeding behavior of 4th and 5th instar cabbage caterpillars in relation to sex, host-plant deprivation and presence of conspecifics. We recorded number of egg ingested per larvae, developmental indices and duration of feeding, exploratory and resting behavior. Kale deprived caterpillars presented high rates of cannibalism, development delay and decreased fecundity. Cannibalism rates were not influenced by the sex of the larvae. In general, the presence of conspecific eggs did not interfere with the frequency and duration of the categorical behavioral events. We conclude that food availability is a strong factor influencing the extent to which A. monuste orseis caterpillars cannibalize.
Resumo:
A list of 681 UBVRI secondary standard stars for CCD photometry is presented. Visual magnitude ranges from 9.7 to 19.4, and the B-V colour index varies from 1.15 to 1.97. The stars are grouped into 11 different fields, each of them is generally observable in a single CCD frame. The stars are located near Landolt UBVRI equatorial standards, accessible to telescopes in both hemispheres, and mainly within the 5 - 8 hours range of right ascension. Photometry, equatorial coordinates and finding charts are provided.
Resumo:
With a life expectancy at the age of 65 of around 20 years, damaging health risk behaviours of young-old adults have become a target for preventive actions. Such risk factors necessitate an accurate understanding of the present and past socioeconomic conditions associated with health risk behaviours. The aim of our study is to assess the impact of certain life events as well as economic and environmental factors on health risk behaviours. We included 1309 participants of the Lausanne Cohort Lc65+ aged 65-70 years and employed logistic regression analyses, with individuals nested within areas. The results illustrate the influences of socioeconomic factors from childhood to young-old age. Life experiences in adulthood and economic resources in young-old age are both associated with unfavourable health behaviours. Neighbourhood is a modest determinant as well, particularly regarding alcohol consumption. Therefore, prevention against health risk behaviours should focus on population subgroups defined on the basis of their socioeconomic and living contexts.
Resumo:
Sleep-wake disturbances are frequently observed in stroke patients and are associated with poorer functional outcome. Until now the effects of sleep on stroke evolution are unknown. The purpose of the present study was to evaluate the effects of three sleep deprivation (SD) protocols on brain damages after focal cerebral ischemia in a rat model. Permanent occlusion of distal branches of the middle cerebral artery was induced in adult rats. The animals were then subjected to 6h SD, 12h SD or sleep disturbances (SDis) in which 3 x 12h sleep deprivation were performed by gentle handling. Infarct size and brain swelling were assessed by Cresyl violet staining, and the number of damaged cells was measured by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Behavioral tests, namely tape removal and cylinder tests, were performed for assessing sensorimotor function. In the 6h SD protocol, no significant difference (P > 0.05) was found either in infarct size (42.5 ± 30.4 mm3 in sleep deprived animals vs. 44.5 ± 20.5 mm3 in controls, mean ± s.d.), in brain swelling (10.2 ± 3.8 % in sleep deprived animals vs. 11.3 ± 2.0 % in controls) or in number of TUNEL-positive cells (21.7 ± 2.0/mm2 in sleep deprived animals vs. 23.0 ± 1.1/mm2 in controls). In contrast, 12h sleep deprivation increased infarct size by 40 % (82.8 ± 10.9 mm3 in SD group vs. 59.2 ± 13.9 mm3 in control group, P = 0.008) and number of TUNEL-positive cells by 137 % (46.8 ± 15/mm in SD group vs. 19.7 ± 7.7/mm2 in control group, P = 0.003). There was no significant difference (P > 0.05) in brain swelling (12.9 ± 6.3 % in sleep deprived animals vs. 11.6 ± 6.0 % in controls). The SDis protocol also increased infarct size by 76 % (3 x 12h SD 58.8 ± 20.4 mm3 vs. no SD 33.8 ± 6.3 mm3, P = 0.017) and number of TUNEL-positive cells by 219 % (32.9 ± 13.2/mm2 vs. 10.3 ± 2.5/mm2, P = 0.008). Brain swelling did not show any difference between the two groups (24.5 ± 8.4 % in SD group vs. 16.7 ± 8.9 % in control group, p > 0.05). Both behavioral tests did not show any concluding results. In summary, we demonstrate that sleep deprivation aggravates brain damages in a rat model of stroke. Further experiments are needed to unveil the mechanisms underlying these effects.
Resumo:
The intensity of selection exerted on ornaments typically varies between environments. Reaction norms may help to identify the conditions under which ornamented individuals have a selective advantage over drab conspecifics. It has been recently hypothesized that in vertebrates eumelanin-based coloration reflects the ability to regulate the balance between energy intake and expenditure. We tested two predictions of this hypothesis in barn owl nestlings, namely that darker eumelanic individuals have a lower appetite and lose less weight when food-deprived. We found that individuals fed ad libitum during 24 h consumed less food when their plumage was marked with larger black spots. When food-deprived for 24 h nestlings displaying larger black spots lost less weight. Thus, in the barn owl the degree of eumelanin-based coloration reflects the ability to withstand periods of food depletion through lower appetite and resistance to food restriction. Eumelanic coloration may therefore be associated with adaptations to environments where the risk of food depletion is high.