979 resultados para Near-Duplicate Detection
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18% respectively.
Resumo:
Neodymium based fluorescence presents several advantages in comparison to conventional rare earth or enzyme-substrate based fluorescence emitting sources (e.g.Tb, HRP). Based on this fact we have herein explored a Nd-based fluoroimmunoassay. We efficiently detected the presence of an oxidized low-density lipoprotein (oxLDL) in human plasma a well-known marker for cardiovascular diseases, which causes around 30% of deaths worldwide. Conventional fluoroimmunoassay uses time-resolved luminescence techniques, with detection in the visible range, to eliminate the fluorescence background from the biological specimens. By using an immunoassay based on functionalized Y(2)O(3):Nd(3+) nanoparticles, where the excitation and emission processes in the Nd(3+) ion occur in the near-infrared (NIR) region, we have succeeded in eliminating the interferences from the biological fluorescence background, avoiding the use of time-resolved techniques. This yields higher emission intensity from the Nd(3+)-nanolabels and efficient detection of anti-oxidized low-density lipoproteins (anti-oxLDL) by Y(2)O(3):Nd(3+)-antibody-antigen conjugation, leading to a novel biolabeling method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
It is barely 15 years since, in 1996, the issue theme of Schizophrenia Bulletin (Vol 22, 2) “Early Detection, and Intervention in Schizophrenia” signified the commencement of this field of research. Since that time the field of early detection research has developed rapidly and it may be translated into clinical practice by the introduction of an Attenuated Psychosis Syndrome in Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, (DSM-5) (www.dsm5.org/ProposedRevisions/Pages/proposedrevision.aspx?rid=412#). Attenuated psychotic symptoms (APS) had first been suggested as a clinical predictor of first-episode psychosis by the Personal Assessment and Crisis Evaluation (PACE) Clinic group as part of the ultrahigh risk (UHR) criteria.1 The term ultrahigh risk became broadly accepted for this set of criteria for imminent risk of developing psychosis in the late 1990s. The use of the term “prodrome” for a state characterized by at-risk (AR) criteria was criticized as a retrospective concept inevitably followed by the full-blown disorder.1 Although alternative terms have been suggested, prodrome is still used in prospective studies (eg, prodromally symptomatic, potentially or putatively prodromal, prodrome-like state/symptoms). Some alternative suggestions such as prepsychotic state/symptoms, subthreshold psychotic symptoms, early psychosis, subsyndromal psychosis, hypopsychosis, or subpsychosis were short-lived. Other terms still in use include UHR, at-risk mental state (ARMS), AR, high risk, clinical high risk (CHR), or early and late AR state. Further, the term psychotic-like experiences (PLEs) has recently (re-)entered early detection research. …
Resumo:
The use of a common environment for processing different powder foods in the industry has increased the risk of finding peanut traces in powder foods. The analytical methods commonly used for detection of peanut such as enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) represent high specificity and sensitivity but are destructive and time-consuming, and require highly skilled experimenters. The feasibility of NIR hyperspectral imaging (HSI) is studied for the detection of peanut traces down to 0.01% by weight. A principal-component analysis (PCA) was carried out on a dataset of peanut and flour spectra. The obtained loadings were applied to the HSI images of adulterated wheat flour samples with peanut traces. As a result, HSI images were reduced to score images with enhanced contrast between peanut and flour particles. Finally, a threshold was fixed in score images to obtain a binary classification image, and the percentage of peanut adulteration was compared with the percentage of pixels identified as peanut particles. This study allowed the detection of traces of peanut down to 0.01% and quantification of peanut adulteration from 10% to 0.1% with a coefficient of determination (r2) of 0.946. These results show the feasibility of using HSI systems for the detection of peanut traces in conjunction with chemical procedures, such as RT-PCR and ELISA to facilitate enhanced quality-control surveillance on food-product processing lines.
Resumo:
The research work presented in the thesis describes a new methodology for the automated near real-time detection of pipe bursts in Water Distribution Systems (WDSs). The methodology analyses the pressure/flow data gathered by means of SCADA systems in order to extract useful informations that go beyond the simple and usual monitoring type activities and/or regulatory reporting , enabling the water company to proactively manage the WDSs sections. The work has an interdisciplinary nature covering AI techniques and WDSs management processes such as data collection, manipulation and analysis for event detection. Indeed, the methodology makes use of (i) Artificial Neural Network (ANN) for the short-term forecasting of future pressure/flow signal values and (ii) Rule-based Model for bursts detection at sensor and district level. The results of applying the new methodology to a District Metered Area in Emilia- Romagna’s region, Italy have also been reported in the thesis. The results gathered illustrate how the methodology is capable to detect the aforementioned failure events in fast and reliable manner. The methodology guarantees the water companies to save water, energy, money and therefore enhance them to achieve higher levels of operational efficiency, a compliance with the current regulations and, last but not least, an improvement of customer service.
Resumo:
In the face of global population growth and the uneven distribution of water supply, a better knowledge of the spatial and temporal distribution of surface water resources is critical. Remote sensing provides a synoptic view of ongoing processes, which addresses the intricate nature of water surfaces and allows an assessment of the pressures placed on aquatic ecosystems. However, the main challenge in identifying water surfaces from remotely sensed data is the high variability of spectral signatures, both in space and time. In the last 10 years only a few operational methods have been proposed to map or monitor surface water at continental or global scale, and each of them show limitations. The objective of this study is to develop and demonstrate the adequacy of a generic multi-temporal and multi-spectral image analysis method to detect water surfaces automatically, and to monitor them in near-real-time. The proposed approach, based on a transformation of the RGB color space into HSV, provides dynamic information at the continental scale. The validation of the algorithm showed very few omission errors and no commission errors. It demonstrates the ability of the proposed algorithm to perform as effectively as human interpretation of the images. The validation of the permanent water surface product with an independent dataset derived from high resolution imagery, showed an accuracy of 91.5% and few commission errors. Potential applications of the proposed method have been identified and discussed. The methodology that has been developed 27 is generic: it can be applied to sensors with similar bands with good reliability, and minimal effort. Moreover, this experiment at continental scale showed that the methodology is efficient for a large range of environmental conditions. Additional preliminary tests over other continents indicate that the proposed methodology could also be applied at the global scale without too many difficulties
Resumo:
This paper presents a new method of eye localisation and face segmentation for use in a face recognition system. By using two near infrared light sources, we have shown that the face can be coarsely segmented, and the eyes can be accurately located, increasing the accuracy of the face localisation and improving the overall speed of the system. The system is able to locate both eyes within 25% of the eye-to-eye distance in over 96% of test cases.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.
Resumo:
Business process model repositories capture precious knowledge about an organization or a business domain. In many cases, these repositories contain hundreds or even thousands of models and they represent several man-years of effort. Over time, process model repositories tend to accumulate duplicate fragments, as new process models are created by copying and merging fragments from other models. This calls for methods to detect duplicate fragments in process models that can be refactored as separate subprocesses in order to increase readability and maintainability. This paper presents an indexing structure to support the fast detection of clones in large process model repositories. Experiments show that the algorithm scales to repositories with hundreds of models. The experimental results also show that a significant number of non-trivial clones can be found in process model repositories taken from industrial practice.
Resumo:
As organizations reach to higher levels of business process management maturity, they often find themselves maintaining repositories of hundreds or even thousands of process models, representing valuable knowledge about their operations. Over time, process model repositories tend to accumulate duplicate fragments (also called clones) as new process models are created or extended by copying and merging fragments from other models. This calls for methods to detect clones in process models, so that these clones can be refactored as separate subprocesses in order to improve maintainability. This paper presents an indexing structure to support the fast detection of clones in large process model repositories. The proposed index is based on a novel combination of a method for process model decomposition (specifically the Refined Process Structure Tree), with established graph canonization and string matching techniques. Experiments show that the algorithm scales to repositories with hundreds of models. The experimental results also show that a significant number of non-trivial clones can be found in process model repositories taken from industrial practice.
Resumo:
PCR-based cancer diagnosis requires detection of rare mutations in k- ras, p53 or other genes. The assumption has been that mutant and wild-type sequences amplify with near equal efficiency, so that they are eventually present in proportions representative of the starting material. Work on factor IX suggests that this assumption is invalid for one case of near- sequence identity. To test the generality of this phenomenon and its relevance to cancer diagnosis, primers distant from point mutations in p53 and k-ras were used to amplify wild-type and mutant sequences from these genes. A substantial bias against PCR amplification of mutants was observed for two regions of the p53 gene and one region of k-ras. For k-ras and p53, bias was observed when the wild-type and mutant sequences were amplified separately or when mixed in equal proportions before PCR. Bias was present with proofreading and non-proofreading polymerase. Mutant and wild-type segments of the factor V, cystic fibrosis transmembrane conductance regulator and prothrombin genes were amplified and did not exhibit PCR bias. Therefore, the assumption of equal PCR efficiency for point mutant and wild-type sequences is invalid in several systems. Quantitative or diagnostic PCR will require validation for each locus, and enrichment strategies may be needed to optimize detection of mutants.
Resumo:
Recent algorithms for monocular motion capture (MoCap) estimate weak-perspective camera matrices between images using a small subset of approximately-rigid points on the human body (i.e. the torso and hip). A problem with this approach, however, is that these points are often close to coplanar, causing canonical linear factorisation algorithms for rigid structure from motion (SFM) to become extremely sensitive to noise. In this paper, we propose an alternative solution to weak-perspective SFM based on a convex relaxation of graph rigidity. We demonstrate the success of our algorithm on both synthetic and real world data, allowing for much improved solutions to marker less MoCap problems on human bodies. Finally, we propose an approach to solve the two-fold ambiguity over bone direction using a k-nearest neighbour kernel density estimator.
Resumo:
As organizations reach higher levels of business process management maturity, they often find themselves maintaining very large process model repositories, representing valuable knowledge about their operations. A common practice within these repositories is to create new process models, or extend existing ones, by copying and merging fragments from other models. We contend that if these duplicate fragments, a.k.a. ex- act clones, can be identified and factored out as shared subprocesses, the repository’s maintainability can be greatly improved. With this purpose in mind, we propose an indexing structure to support fast detection of clones in process model repositories. Moreover, we show how this index can be used to efficiently query a process model repository for fragments. This index, called RPSDAG, is based on a novel combination of a method for process model decomposition (namely the Refined Process Structure Tree), with established graph canonization and string matching techniques. We evaluated the RPSDAG with large process model repositories from industrial practice. The experiments show that a significant number of non-trivial clones can be efficiently found in such repositories, and that fragment queries can be handled efficiently.