969 resultados para Near surface regions
Resumo:
Since the introduction of fiber reinforced polymers (FRP) for the repair and retrofit of concrete structures in the 1980’s, considerable research has been devoted to the feasibility of their application and predictive modeling of their performance. However, the effects of flaws present in the constitutive components and the practices in substrate preparation and treatment have not yet been thoroughly studied. This research aims at investigating the effect of surface preparation and treatment for the pre-cured FRP systems and the groove size tolerance for near surface mounted (NSM) FRP systems; and to set thresholds for guaranteed system performance. The research included both analytical and experimental components. The experimental program for the pre-cured FRP systems consisted of a total of twenty-four (24) reinforced concrete (RC) T-beams with various surface preparation parameters and surface flaws, including roughness, flatness, voids and cracks (cuts). For the NSM FRP systems, a total of twelve (12) additional RC T-beams were tested with different grooves sizes for FRP bars and strips. The analytical program included developing an elaborate nonlinear finite element model using the general purpose software ANSYS. The model was subsequently used to extend the experimental range of parameters for surface flatness in pre-cured FRP systems, and for groove size study in the NSM FRP systems. Test results, confirmed by further analyses, indicated that contrary to the general belief in the industry, the impact of surface roughness on the global performance of pre-cured FRP systems was negligible. The study also verified that threshold limits set for wet lay-up FRP systems can be extended to pre-cured systems. The study showed that larger surface voids and cracks (cuts) can adversely impact both the strength and ductility of pre-cured FRP systems. On the other hand, frequency (or spacing) of surface cracks (cuts) may only affect system ductility rather than its strength. Finally, within the range studied, groove size tolerance of +1/8 in. does not appear to have an adverse effect on the performance of NSM FRP systems.
Resumo:
We report on continuously measured 222Rn activity concentrations in near-surface air at Neumayer Station in the period 1995-2011. This 17-year record showed no long-term trend and has overall mean ± standard deviation of (0.019 ± 0.012) Bq/m**3. A distinct and persistent seasonality could be distinguished with maximum values of (0.028 ± 0.013) Bq/m**3 from January to March and minimum values of (0.015 ± 0.009) Bq/m**3 from May to October. Elevated 222Rn activity concentrations were typically associated with air mass transport from the Antarctic Plateau. Our results do not support a relation between enhanced 222Rn activity concentrations at Neumayer and cyclonic activity or long-range transport from South America. The impact of oceanic 222Rn emissions could not be properly assessed but we tentatively identified regional sea ice extent (SIE) variability as a significant driver of the annual 222Rn cycle.
Resumo:
Numerous ecological problems of continental shelf ecosystems require a refined knowledge of the evolution of suspended sediment concentrations (SSC). The present investigation focuses on the spatial and temporal variabilities of near-surface SSC in coastal waters of the English Channel (western Europe) by exploiting numerical predictions from the Regional Ocean Modeling System ROMS. Extending previous investigations of ROMS performances in the Channel, this analysis refines, with increased spatial and temporal resolutions, the characterization of near-surface SSC patterns revealing areas where concentrations are highly correlated with evolutions of tides and waves. Significant tidal modulations of near-surface concentrations are thus found in the eastern English Channel and the French Dover Strait while a pronounced influence of waves is exhibited in the Channel Islands Gulf. Coastal waters present furthermore strong SSC temporal variations, particularly noticeable during storm events of autumn and winter, with maximum near-surface concentrations exceeding 40 mg l−1 and increase by a factor from 10 to 18 in comparison with time-averaged concentrations. This temporal variability strongly depends on the granulometric distribution of suspended sediments characterized by local bi-modal contributions of silts and sands off coastal irregularities of the Isle of Wight, the Cotentin Peninsula and the southern Dover Strait.
Resumo:
Using a focused ion beam (FIB) instrument, electron-transparent samples (termed foils) have been cut from the naturally weathered surfaces of perthitic alkali feldspars recovered from soils overlying the Shap granite, northwest England. Characterization of these foils by transmission electron microscopy (TEM) has enabled determination of the crystallinity and chemical composition of near-surface regions of the feldspar and an assessment of the influence of intragranular microtextures on the microtopography of grain surfaces and development of etch pits. Damage accompanying implantation of the 30 kV Ga+ ions used for imaging and deposition of protective platinum prior to ion milling creates amorphous layers beneath outer grain surfaces, but can be overcome by coating grains with > 85 nm of gold before FIB work. The sidewalls of the foil and feldspar surrounding original voids are also partially amorphized during later stages of ion milling. No evidence was found for the presence of amorphous or crystalline weathering products or amorphous "leached layers" immediately beneath outer grain surfaces. The absence of a leached layer indicates that chemical weathering of feldspar in the Shap soils is stoichiometric, or if non-stoichiometric, either the layer is too thin to resolve by the TEM techniques used (i.e., <=similar to 2.5 nm) or an insufficient proportion of ions have been leached from near-surface regions so that feldspar crystallinity is maintained. No evidence was found for any difference in the mechanisms of weathering where a microbial filament rests on the feldspar surface. Sub-micrometer-sized steps on the grain surface have formed where subgrains and exsolution lamellae have influenced the propagation of fractures during physical weathering, whereas finer scale corrugations form due to compositional or strain-related differences in dissolution rates of albite platelets and enclosing tweed orthoclase. With progressive weathering, etch pits that initiated at the grain surface extend into grain interiors as etch tubes by exploiting preexisting networks of nanopores that formed during the igneous history of the grain. The combination of FIB and TEM techniques is an especially powerful way of exploring mechanisms of weathering within the "internal zone" beneath outer grain surfaces, but results must be interpreted with caution owing to the ease with which artifacts can be created by the high-energy ion and electron beams used in the preparation and characterization of the foils.
Resumo:
The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and “global” measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.
Resumo:
Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.
Resumo:
Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.
Resumo:
In this study, the short- and long-range chemical environments of Cu dopant in TiO2 photocatalyst have been investigated. The Cu-doped and undoped TiO2 specimens were prepared by the sol-gel approach employing CuSO4·5H2O and Ti(O-iPr)4 precursors and subjecting the dried gels to thermal treatment at 400 and 500 C. The photocatalytic activity, investigated by methylene blue degradation under sunlight irradiation, showed a significantly higher efficiency of Cu-doped samples than that of pure TiO2. The X-ray diffraction results showed the presence of anatase phase for samples prepared at 400 and 500 C. No crystalline CuSO4 phase was detected below 500 C. It was also found that doping decreases the crystallite size in the (004) and (101) directions. Infrared spectroscopy results indicated that the chemical environment of sulfate changes as a function of thermal treatment, and UV-vis spectra showed that the band gap decreases with thermal treatment and Cu doping, showing the lowest value for the 400 C sample. X-ray absorption fine structure measurements and analysis refinements revealed that even after thermal treatment and photocatalytic assays, the Cu2+ local order is similar to that of CuSO4, containing, however, oxygen vacancies. X-ray photoelectron spectroscopy data, limited to the near surface region of the catalyst, evidenced, besides CuSO4, the presence of Cu1+ and CuO phases, indicating the active role of Cu in the TiO2 lattice. © 2013 Springer Science+Business Media New York.
Resumo:
Abstract. Speckle is being used as a characterization tool for the analysis of the dynamics of slow-varying phenomena occurring in biological and industrial samples at the surface or near-surface regions. The retrieved data take the form of a sequence of speckle images. These images contain information about the inner dynamics of the biological or physical process taking place in the sample. Principal component analysis (PCA) is able to split the original data set into a collection of classes. These classes are related to processes showing different dynamics. In addition, statistical descriptors of speckle images are used to retrieve information on the characteristics of the sample. These statistical descriptors can be calculated in almost real time and provide a fast monitoring of the sample. On the other hand, PCA requires a longer computation time, but the results contain more information related to spatial–temporal patterns associated to the process under analysis. This contribution merges both descriptions and uses PCA as a preprocessing tool to obtain a collection of filtered images, where statistical descriptors are evaluated on each of them. The method applies to slow-varying biological and industrial processes.
Resumo:
Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.
Resumo:
Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.
Resumo:
Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.