1000 resultados para Nascimento vivo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Haematopoiesis is the process by which a hierarchy of mature and progenitor blood cells are formed. These cell populations are all derived from multipotent haematopoietic stem cells (HSC), which reside in the bone marrow ‘niche’ of adult humans. Over the lifetime of a healthy individual, this HSC population replenishes between 1010-1011 blood cells on a daily basis. Dysregulation of this system can lead to a number of haematopoietic diseases, including aplastic anaemias and leukaemias, which result in, or require for disease resolution, bone marrow cell depletion. In 1956, E. Donnall Thomas demonstrated that haematopoiesis could be restored by transplanting bone marrow-derived cells from one man into his identical twin brother, who was suffering from advanced leukaemia. His success drew significant interest in academic research and medicine communities, and 12 years later, the first successful allogeneic transplant was performed. To this day, HSCs remain the most studied and characterised stem cell population. In fact, HSCs are the only stem cell population routinely utilised in the clinic. As such, HSCs function as a model system both for the biological investigation of stem cells, as well as for their clinical application. Herein, we briefly review HSC transplantation, strategies for the ex vivo cultivation of HSCs, recent clinical outcomes, and their impact on the future direction of HSC transplantation therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in vitro and in vivo degradation properties of poly(lactic-co-glycolic acid) (PLGA) scaffolds produced by two different technologies - thermally induced phase separation (TIPS), and solvent casting and particulate leaching (SCPL) were compared. Over 6 weeks, in vitro degradation produced changes in SCPL scaffold dimension, mass, internal architecture and mechanical properties. TIPS scaffolds produced far less changes in these parameters providing significant advantages over SCPL. In vivo results were based on a microsurgically created arteriovenous (AV) loop sandwiched between two TIPS scaffolds placed in a polycarbonate chamber under rat groin skin. Histologically, a predominant foreign body giant cell response and reduced vascularity was evident in tissue ingrowth between 2 and 8 weeks in TIPS scaffolds. Tissue death occurred at 8 weeks in the smallest pores. Morphometric comparison of TIPS and SCPL scaffolds indicated slightly better tissue ingrowth but greater loss of scaffold structure in SCPL scaffolds. Although advantageous in vitro, large surface area:volume ratios and varying pore sizes in PLGA TIPS scaffolds mean that effective in vivo (AV loop) utilization will only be achieved if the foreign body response can be significantly reduced so as to allow successful vascularisation, and hence sustained tissue growth, in pores less than 300 μm. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the effect of soft contact lens type on the in vivo tear film surface quality (TFSQ) on daily disposable lenses and to establish whether two recently developed techniques for noninvasive measurement of TFSQ can distinguish between different contact lens types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium silicate (CaSiO3, CS) ceramics have received significant attention for application in bone regeneration due to their excellent in vitro apatite-mineralization ability; however, how to prepare porous CS scaffolds with a controllable pore structure for bone tissue engineering still remains a challenge. Conventional methods could not efficiently control the pore structure and mechanical strength of CS scaffolds, resulting in unstable in vivo osteogenesis. The aim of this study is to set out to solve these problems by applying a modified 3D-printing method to prepare highly uniform CS scaffolds with controllable pore structure and improved mechanical strength. The in vivo osteogenesis of the prepared 3D-printed CS scaffolds was further investigated by implanting them in the femur defects of rats. The results show that the CS scaffolds prepared by the modified 3D-printing method have uniform scaffold morphology. The pore size and pore structure of CS scaffolds can be efficiently adjusted. The compressive strength of 3D-printed CS scaffolds is around 120 times that of conventional polyurethane templated CS scaffolds. 3D-Printed CS scaffolds possess excellent apatite-mineralization ability in simulated body fluids. Micro-CT analysis has shown that 3D-printed CS scaffolds play an important role in assisting the regeneration of bone defects in vivo. The healing level of bone defects implanted by 3D-printed CS scaffolds is obviously higher than that of 3D-printed b-tricalcium phosphate (b-TCP) scaffolds at both 4 and 8 weeks. Hematoxylin and eosin (H&E) staining shows that 3D-printed CS scaffolds induce higher quality of the newly formed bone than 3D-printed b-TCP scaffolds. Immunohistochemical analyses have further shown that stronger expression of human type I collagen (COL1) and alkaline phosphate (ALP) in the bone matrix occurs in the 3D-printed CS scaffolds than in the 3D-printed b-TCP scaffolds. Considering these important advantages, such as controllable structure architecture, significant improvement in mechanical strength, excellent in vivo osteogenesis and since there is no need for second-time sintering, it is indicated that the prepared 3D-printed CS scaffolds are a promising material for application in bone regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prior in vitro studies, utilizing 31Pn uclear magnetic resonance (31PN MR) to measure the chemical shift (CT) of 0-ATP and lengthening of the phosphocreatine spin-spin (7"') relaxation time, suggested an assessment of their efficacy in measuring magnesium depletion in vivo. Dietary magnesium depletion (Me$) produced markedly lower magnesium in plasma (0.44 vs 1. I3 mmol/liter) and bone (1 30 vs 190 pmol/g) but much smaller changes in muscle (41 vs 45 pmol/g, P < 0.01), heart (42.5 vs 44.6 prnol/g), and brain (30 vs 32 pmollg). NMR experiments in anesthetized rats in a Bruker 7-T vertical bore magnet showed that in M e $ rats there was a significant change in brain j3-ATP shift (16.15 vs 16.03 ppm, P < 0.05). These chemical shifts gave a calculated free [Mg"] of 0.71 mM (control) and 0.48 mM (MgZ+$). In muscle the change in j3-ATP shift was not significant (Me$ 15.99 ppm, controls 15.96 ppm), corresponding to a calculated free M P of 0.83 and 0.95 mM, respectively. Phosphccreatine Tz (Carr-Purcell, spin-echo pulse sequence) was no different with M e $ in muscle in vivo (surface coil) (M$+$ 136, control 142 ms) or in isolated perfused hearts (Helmholtz coil) (control 83, M e $ 92 ms). 3'P NMR is severely limited in its ability to detect dietary magnesium depletion in vivo. Measurement of j3-ATP shift in brain may allow studies of the effects of interaction in group studies but does not allow prediction of an individual magnesium status.