917 resultados para Nanotubes. Titanates. Hydrothermal synthesis. Acid wash. Nanostructured materials
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Magnetic memories are a backbone of today's digital data storage technology, where the digital information is stored as the magnetic configuration of nanostructured ferromagnetic bits. Currently, the writing of the digital information on the magnetic memory is carried out with the help of magnetic fields. This approach, while viable, is not optimal due to its intrinsically high energy consumption and relatively poor scalability. For this reason, the research for different mechanisms that can be used to manipulate the magnetic configuration of a material is of interest. In this thesis, the control of the magnetization of different nanostructured materials with field-free mechanisms is investigated. The magnetic configuration of these nanostructured materials was imaged directly with high resolution x-ray magnetic microscopy. rnFirst of all, the control of the magnetic configuration of nanostructured ferromagnetic Heusler compounds by fabricating nanostructures with different geometries was analyzed. Here, it was observed that the magnetic configuration of the nanostructured elements is given by the competition of magneto-crystalline and shape anisotropy. By fabricating elements with different geometries, we could alter the point where these two effects equilibrate, allowing for the possibility to tailor the magnetic configuration of these nanostructured elements to the required necessities.rnThen, the control of the magnetic configuration of Ni nanostructures fabricated on top of a piezoelectric material with the magneto-elastic effect (i.e. by applying a piezoelectric strain to the Ni nanostructures) was investigated. Here, the magneto-elastic coupling effect gives rise to an additional anisotropy contribution, proportional to the strain applied to the magnetic material. For this system, a reproducible and reversible control of the magnetic configuration of the nanostructured Ni elements with the application of an electric field across the piezoelectric material was achieved.rnFinally, the control of the magnetic configuration of La0.7Sr0.3MnO3 (LSMO) nanostructures with spin-polarized currents was studied. Here, the spin-transfer torque effect was employed to achieve the displacement of magnetic domain walls in the LSMO nanostructures. A high spin-transfer torque efficiency was observed for LSMO at low temperatures, and a Joule-heating induced hopping of the magnetic domain walls was observed at room temperatures, allowing for the analysis of the energetics of the domain walls in LSMO.rnThe results presented in this thesis give thus an overview on the different field-free approaches that can be used to manipulate and tailor the magnetization configuration of a nanostructured material to the various technological requirements, opening up novel interesting possibilities for these materials.
Resumo:
The increase of atmospheric CO2 has been identified as the primary cause for the observed global warming over the past century. The geological and oceanic sequestration of CO2 has issues, such as cost and leakage as well as effects on sea biota. The ideal solution should be the conversion of CO2 into useful materials. However, most processes require high energy input. Therefore, it is necessary to explore novel processes with low energy demands to convert CO2 to useful solid materials. Amorphous carbon nitride and graphone received much attention due to their unusual structures and properties as well as their potential applications. However, to date there has been no attempt to synthesize those solid materials from CO2. Lithium nitride (Li3N) and lithium imide (Li2NH) are important hydrogen storage materials. However, their optical properties and reactivity has not yet studied. This dissertation research is aimed at the synthesis of carbon nitrides and graphone from CO2 and CO via their reaction with Li3N and Li2NH. The research was focused on (1) the evaluation of Li3N and Li2NH properties, (2) thermodynamic analysis of conversion of carbon dioxide and carbon monoxide into carbon nitride and other solid materials, (3) synthesis of carbon nitride from carbon dioxide, and (4) synthesis of graphone from carbon monoxide. First, the properties of Li3N, Li2NH, and LiNH2 were investigated. The X-ray diffraction measurements revealed that heat-treatment at 500°C introduce a phase transformation of β-Li3N to α-Li3N. Furthermore, the UV-visible absorption evaluation showed that the energy gaps of α-Li3N and β-Li3N are 1.81 and 2.14 eV, respectively. The UV-visible absorption measurements also revealed that energy gaps are 3.92 eV for Li2NH and 3.93 eV for LiNH2. This thermodynamic analysis was performed to predict the reactions. It was demonstrated that the reaction between carbon dioxide and lithium nitride is thermodynamically favorable and exothermic, which can generate carbon nitride and lithium cyanamide. Furthermore, the thermodynamic calculation indicated that the reaction between carbon monoxide and lithium imide can produce graphone and lithium cyanamide along with releasing heat. Based on the above thermodynamic analysis, the experiment of CO2 and Li3N reaction and CO and Li2NH were carried out. It was found that the reaction between CO2 and Li3N is very fast and exothermic. The XRD and element analysis revealed that the products are crystal lithium cyanamide and amorphous carbon nitrides with Li2O and Li2CO3. Furthermore, TEM images showed that carbon nitrides possess layer-structure, namely, it is graphene-structured carbon nitride. It was found that the reaction between Li2NH and CO was also exothermic, which produced graphone instead of carbon nitride. The composition and structures of graphone were evaluated by XRD, element analysis, TEM observation, and Raman spectra.
Resumo:
Sequential insertion of different dyes into the 1D channels of zeolite L (ZL) leads to supramolecular sandwich structures and allows the formation of sophisticated antenna composites for light harvesting, transport, and trapping. The synthesis and properties of dye molecules, host materials, composites, and composites embedded in polymer matrices, including two- and three-color antenna systems, are described. Perylene diimide (PDI) dyes are an important class of chromophores and are of great interest for the synthesis of artificial antenna systems. They are especially well suited to advancing our understanding of the structure–transport relationship in ZL because their core fits tightly through the 12-ring channel opening. The substituents at both ends of the PDIs can be varied to a large extent without influencing their electronic absorption and fluorescence spectra. The intercalation/insertion of 17 PDIs, 2 terrylenes, and 1 quaterrylene into ZL are compared and their interactions with the inner surface of the ZL nanochannels discussed. ZL crystals of about 500 nm in size have been used because they meet the criteria that must be respected for the preparation of antenna composites for light harvesting, transport, and trapping. The photostability of dyes is considerably improved by inserting them into the ZL channels because the guests are protected by being confined. Plugging the channel entrances, so that the guests cannot escape into the environment is a prerequisite for achieving long-term stability of composites embedded in an organic matrix. Successful methods to achieve this goal are described. Finally, the embedding of dye–ZL composites in polymer matrices, while maintaining optical transparency, is reported. These results facilitate the rational design of advanced dye–zeolite composite materials and provide powerful tools for further developing and understanding artificial antenna systems, which are among the most fascinating subjects of current photochemistry and photophysics.
Resumo:
Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials.
Resumo:
Transient power dissipation profiles in handheld electronic devices alternate between high and low power states depending on usage. Capacitive thermal management based on phase change materials potentially offers a fan-less thermal management for such transient profiles. However, such capacitive management becomes feasible only if there is a significant enhancement in the enthalpy change per unit volume of the phase change material since existing bulk materials such as paraffin fall short of requirements. In this thesis I propose novel nanostructured thin-film materials that can potentially exhibit significantly enhanced volumetric enthalpy change. Using fundamental thermodynamics of phase transition, calculations regarding the enhancement resulting from superheating in such thin film systems is conducted. Furthermore design of a microfabricated calorimeter to measure such enhancements is explained in detail. This work advances the state-of-art of phase change materials for capacitive cooling of handheld devices.
Resumo:
Different types of heterogeneous catalysts of the silicoaluminophosphate type, (SAPO-5, SAPO-11, SAPO-31, SAPO-34 and SAPO-41), molecular sieves with a: AFI, AEL, ATO, CHA and AFO structure, respectively, were synthesized through the hydrothermal method. Using sources such as hydrated alumina (pseudobohemita), phosphoric acid, silica gel, water, as well as, different types of organic structural templates, such as: cetyltrimethylammonium bromide (CTMABr), di-isopropylamine (DIPA), di-n- propylamine (DNPA) and tetraethylammonium hydroxide (TEOS), for the respective samples. During the preparation of the silicoaluminophosphates, the crystallization process of the samples occurred at a temperature of approximately 200 ° C, ranging through periods of 18-72 h, when it was possible to obtain pure phases for the SAPOs. The materials were furthermore washed with deionized water, dried and calcined to remove the molecules of the templates. Subsequently the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared region (FT-IR), specific surface area and thermal analysis via TG/DTG. The acidic properties were determined using adsorption of n-butylamine followed by programmed termodessorption. These methods revealed that the SAPO samples showed a typically weak to moderate acidity. However, a small amount of strong acid sites was also detected. The deactivation of the catalysts was conducted by artificially coking the samples, followed by n-hexane cracking reactions in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the catalysts regeneration and removal of the coke
Resumo:
The role of non-neuronal brain cells, called astrocytes, is emerging as crucial in brain function and dysfunction, encompassing the neurocentric concept that was envisioning glia as passive components. Ion and water channels and calcium signalling, expressed in functional micro and nano domains, underpin astrocytes’ homeostatic function, synaptic transmission, neurovascular coupling acting either locally and globally. In this respect, a major issue arises on the mechanism through which astrocytes can control processes across scales. Finally, astrocytes can sense and react to extracellular stimuli such as chemical, physical, mechanical, electrical, photonic ones at the nanoscale. Given their emerging importance and their sensing properties, my PhD research program had the general goal to validate nanomaterials, interfaces and devices approaches that were developed ad-hoc to study astrocytes. The results achieved are reported in the form of collection of papers. Specifically, we demonstrated that i) electrospun nanofibers made of polycaprolactone and polyaniline conductive composites can shape primary astrocytes’ morphology, without affecting their function ii) gold coated silicon nanowires devices enable extracellular recording of unprecedented slow wave in primary differentiated astrocytes iii) colloidal hydrotalcites films allow to get insight in cell volume regulation process in differentiated astrocytes and to describe novel cytoskeletal actin dynamics iv) gold nanoclusters represent nanoprobe to trigger astrocytes structure and function v) nanopillars of photoexcitable organic polymer are potential tool to achieve nanoscale photostimulation of astrocytes. The results were achieved by a multidisciplinary team working with national and international collaborators that are listed and acknowledged in the text. Collectively, the results showed that astrocytes represent a novel opportunity and target for Nanoscience, and that Nanoglial interface might help to unveil clues on brain function or represent novel therapeutic approach to treat brain dysfunctions.
Resumo:
TiTanate NanoTubes (TTNT) were synthesized by hydrothermal alkali treatment of TiO2 anatase followed by repeated washings with distinct degrees of proton exchange. TTNT samples with different sodium contents were characterized, as synthesized and after heattreatment (200-800ºC), by X-ray diffraction, scanning and transmission electron microscopy, electron diffraction, thermal analysis, nitrogen adsorption and spectroscopic techniques like FTIR and UV-Vis diffuse reflectance. It was demonstrated that TTNTs consist of trititanate structure with general formula NaxH2−xTi3O7·nH2O, retaining interlayer water in its multiwalled structure. The removal of sodium reduces the amount of water and contracts the interlayer space leading, combined with other factors, to increased specific surface area and mesopore volume. TTNTs are mesoporous materials with two main contributions: pores smaller than 10 nm due to the inner volume of nanotubes and larger pores within 5-60 nm attributed to the interparticles space. Chemical composition and crystal structure of TTNTs do not depend on the average crystal size of the precursor TiO2-anatase, but this parameter affects significantly the morphology and textural properties of the nanostructured product. Such dependence has been rationalized using a dissolution-recrystallization mechanism, which takes into account the dissolution rate of the starting anatase and its influence on the relative rates of growth and curving of intermediate nanosheets. The thermal stability of TTNT is defined by the sodium content and in a lower extent by the crystallinity of the starting anatase. It has been demonstrated that after losing interlayer water within the range 100-200ºC, TTNT transforms, at least partially, into an intermediate hexatitanate NaxH2−xTi6O13 still retaining the nanotubular morphology. Further thermal transformation of the nanostructured tri- and hexatitanates occurs at higher or lower temperature and follows different routes depending on the sodium content in the structure. At high sodium load (water washed samples) they sinter and grow towards bigger crystals of Na2Ti3O7 and Na2Ti6O13 in the form of rods and ribbons. In contrast, protonated TTNTs evolve to nanotubes of TiO2(B), which easily convert to anatase nanorods above 400ºC. Besides hydroxyls and Lewis acidity typical of titanium oxides, TTNTs show a small contribution of protonic acidity capable of coordinating with pyridine at 150ºC, which is lost after calcination and conversion into anatase. The isoeletric point of TTNTs was measured within the range 2.5-4.0, indicating behavior of a weak acid. Despite displaying semiconductor characteristics exhibiting typical absorption in the UV-Vis spectrum with estimated bandgap energy slightly higher than that of its TiO2 precursor, TTNTs showed very low performance in the photocatalytic degradation of cationic and anionic dyes. It was concluded that the basic reason resides in its layered titanate structure, which in comparison with the TiO2 form would be more prone to the so undesired electron-hole pair recombination, thus inhibiting the photooxidation reactions. After calcination of the protonated TTNT into anatase nanorods, the photocatalytic activity improved but not to the same level as that exhibited by its precursor anatase
Resumo:
Nanoporous materials with large surface area and well-ordered pore structure have been synthesized. Thiol groups were grafted on the materials' surface to make heavy metal ion pre-concentration media. The adsorption properties ofthe materials were explored. Mercury, gold and silver can be strongly adsorbed by these materials, even in the presence of alkaline earth metal ion. Though the materials can adsorb other heavy metal ions such as lead and copper, they show differential adsorption ability when several ions are present in solution. The adsorption sequence is: mercury> == silver> copper » lead and cadmium. In the second part of this work, the memory effects of mercury, gold, silver and boron were investigated. The addition of 2% L-cysteine and 1% thiourea eliminates the problems of the three metal ions completely. The wash-out time for mercury dropped from more than 20 minutes to 18 seconds, and the wash-out time for gold decreased from more than 30 minutes to 49 seconds. The memory effect of boron can be reduced by the use of mannitol.
Resumo:
The synthesis and characterization of CuO flower-nanostructure processed in domestic hydrothermal microwave oven was presented. Phase analysis was carried out using X-ray diffraction (XRD) and micro-Raman scattering (MRS) and the results confirmed the CuO flower-nanostructure as a single-phase. The field-emission scanning electron microscopy (FEG-SEM) was used to estimate the average spheres diameter while transmission electron microscope (TEM) to observe the thorn of the flower-nanostructures. The mechanism of CuO flower-nanostructures formation is proposed and explained. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)