360 resultados para Nanomechanische Cantilever


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A programme of research on the seismic behaviour of retaining walls has been under way at Cambridge since 1981. Centrifuge tests have presently been conducted both on cantilever walls and isolated mass walls, retaining dry sands of varying grading and density. This paper is devoted to the modelling of fixed-base cantilever walls retaining Leighton Buzzard (14/25) sand of relative density 99% with a horizontal surface level with the crest of the wall. The base of the centrifuge container was used to fix the walls, and to provide a rigid lower boundary for the sand. No attempt was made to inhibit the propagation of compression waves from the side of the container opposite the inside face of the model wall. The detailed analysis of dynamic deflections and bending moments was made difficult by the anelastic nature of reinforced concrete, and the difficulty of measuring bending strains thereon. A supplementary programme of well-instrumented tests on Dural walls of similar stiffness, including the modelling of models, was therefore carried out. Refs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seismic performance of waterfront cantilever sheet pile retaining walls is of continuing interest to geotechnical engineers as these structures suffer severe damage and even complete failure during earthquakes. This is often precipitated by liquefaction of the surrounding soil, either in the backfill or in front of the wall. This paper presents results from a series of small-scale plane strain models that were tested on a 1-g shaking table and recorded using a high-speed, high-resolution digital camera. The technique of Particle Image Velocimetry (PIV) was applied in order to allow the failure mechanisms to be visualised. It is shown that using PIV analyses it is possible to obtain failure mechanisms for a cantilever wall in liquefiable soil. These failure mechanisms are compared with those obtained for a cantilever wall in dry soil, previously carried out at a similar scale. It was observed that seismic liquefaction causes significant displacement in much larger zones of soil near the retaining wall compared to an equivalent dry case. The failure mechanism for a cantilever wall with liquefiable backfill, but with a remediated zone designed not to liquefy, is also presented and compared to the unremediated case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new packaged fiber Bragg grating using bimetal cantilever beam as the strain agent is presented. The grating is two-point attached on one specific surface of the bimetal beam which consists of two metallic material with different thermal-expansion coefficient. Thereby the grating can be compressed or stretched along with the cantilever beam while temperature varies and temperature compensation can be realized. At the same time, grating chirping can be avoided for the particular attaching method. Experiment results demonstrated that the device is able to automatically compensate temperature induced wavelength shift. The temperature dependence of Bragg wavelength reduced to -0.4 pm/degrees C over the temperature range from -20 to 60 degrees C. This fiber grating package technique is cost effective and can be used in strain sensing. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A GaAs-based micro-opto-electro-mech anical-systems(MOEMS) tunable resonant cavity enhanced(RCE)photodetector with a continuous tuning range of 31nm under a 6V tuning voltage is demonstrated. The single cantilever beam structure is adopted for this MOEMS tunable RCE photodetector. The maximum and minimum peak quantum efficiency during the tuning are 36.9 % and 30. 8 %, respectively. The maximum and minimum full-width-at-halfmaximum (FWHM) are 20nm and 14nm,respectively. The dark current density is 7.46A/m2 without bias.