953 resultados para Nanocomposite membrane
Resumo:
A solar thermal membrane distillation pilot plant was operated for over 70 days in field conditions. The pilot plant incorporated a single spiral wound permeate gap membrane distillation style of module. All energy used to operate the unit was supplied by solar hot water collectors and photovoltaic panels. The process was able to produce a distillate stream of product water with a conductivity less than 10 µS/cm. Feed water concentration varied from 2,400 µS/cm to 106,000 µS/cm. The process is expected to find application in the production of drinking water for remote island and arid regions without the consumption of electrical energy.
Resumo:
Adequate amount of graphene oxide (GO) was firstly prepared by oxidation of graphite and GO/epoxy nanocomposites were subsequently prepared by typical solution mixing technique. X-ray diffraction (XRD) pattern, X-ray photoelectron (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy indicated the successful preparation of GO. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images of the graphite oxide showed that they consist of a large amount of graphene oxide platelets with a curled morphology containing of a thin wrinkled sheet like structure. AFM image of the exfoliated GO signified that the average thickness of GO sheets is ~1.0 nm which is very similar to GO monolayer. Mechanical properties of as prepared GO/epoxy nanocomposites were investigated. Significant improvements in both Young’s modulus and tensile strength were observed for the nanocomposites at very low level of GO loading. The Young’s modulus of the nanocomposites containing 0.5 wt% GO was 1.72 GPa, which was 35 % higher than that of the pure epoxy resin (1.28 GPa). The effective reinforcement of the GO based epoxy nanocomposites can be attributed to the good dispersion and the strong interfacial interactions between the GO sheets and the epoxy resin matrices.
Resumo:
Purpose: One of the challenges associated with cell-based therapies for repairing the retina is the development of suitable materials on which to grow and transplant retinal cells. Using the ARPE-19 cell line, we have previously demonstrated the feasibility of growing RPE-derived cells on membranes prepared from the silk protein fibroin. The present study was aimed at developing a porous, ultra-thin fibroin membrane that might better support development of apical-basal polarity in culture, and to extend this work to primary cultures of human RPE cells. Methods: Ultra-thin fibroin membranes were prepared using a highly polished casting table coated with Topas® (a cyclic olefin copolymer) and a 1:0.03 aqueous solution of fibroin and PEO (Mv 900 000 g/mol). Following drying, the membranes were water annealed to make them water-stable, washed in water to remove PEO, sterilised by treatment with 95% ethanol, and washed extensively in saline. Primary cultures containing human RPE cells were established from donor posterior eye cups and maintained in DMEM/F12 medium supplemented with 10% fetal bovine serum and antibiotics. First passage cultures were seeded onto fibroin membranes pre-coated with vitronectin and grown for 6 weeks in medium supplemented with 1% serum. Comparative cultures were established on porous 1.0 µm pore PET membrane (Millipore) and using ARPE-19 cells. Results: The fibroin membranes displayed an average thickness of 3 µm and contained numerous dimples/pore-like structures of up to 3-5 µm in diameter. The primary cultures predominantly contained pigmented epithelial cells, but mesenchymal cells (presumed fibroblasts) were also often present. Passaged cultures appeared to attach equally well to either fibroin or PET membranes. Over time cells on either material adopted a more cobblestoned morphology. Conclusions: Progress has been made towards developing a porous ultra-thin fibroin membrane that supports cultivation of RPE cells. Further studies are required to determine the degree of membrane permeability and RPE polarity.
Resumo:
As proteins within cells are spatially organized according to their role, knowledge about protein localization gives insight into protein function. Here, we describe the LOPIT technique (localization of organelle proteins by isotope tagging) developed for the simultaneous and confident determination of the steady-state distribution of hundreds of integral membrane proteins within organelles. The technique uses a partial membrane fractionation strategy in conjunction with quantitative proteomics. Localization of proteins is achieved by measuring their distribution pattern across the density gradient using amine-reactive isotope tagging and comparing these patterns with those of known organelle residents. LOPIT relies on the assumption that proteins belonging to the same organelle will co-fractionate. Multivariate statistical tools are then used to group proteins according to the similarities in their distributions, and hence localization without complete centrifugal separation is achieved. The protocol requires approximately 3 weeks to complete and can be applied in a high-throughput manner to material from many varied sources.
Resumo:
In eukaryotes, numerous complex sub-cellular structures exist. The majority of these are delineated by membranes. Many proteins are trafficked to these in order to be able to carry out their correct physiological function. Assigning the sub-cellular location of a protein is of paramount importance to biologists in the elucidation of its role and in the refinement of knowledge of cellular processes by tracing certain activities to specific organelles. Membrane proteins are a key set of proteins as these form part of the boundary of the organelles and represent many important functions such as transporters, receptors, and trafficking. They are, however, some of the most challenging proteins to work with due to poor solubility, a wide concentration range within the cell and inaccessibility to many of the tools employed in proteomics studies. This review focuses on membrane proteins with particular emphasis on sub-cellular localization in terms of methodologies that can be used to determine the accurate location of membrane proteins to organelles. We also discuss what is known about the membrane protein cohorts of major organelles.
Resumo:
Background Extracorporeal membrane oxygenation (ECMO) is used for severe lung and/or heart failure in intensive care units (ICU). The Prince Charles Hospital (TPCH) has one of the largest ECMO units in Australia. Its use rapidly increased during the H1N1 (“swine flu”) pandemic and an increase in pedal complications resulted. The relationship between ECMO and pedal complications has been described, particularly in children, though no strong data exists. This paper presents a case series of foot complications in patients having received ECMO treatment. Methods We present nine cases of severe foot complications resulting from patients receiving ECMO treatment at TPCH in 2009–2012. Results Case ages ranged from 16 - 58 years and three were male. Six cases had an unremarkable medical history prior to H1N1 or H1N2 infection, one had Cardiomyopathy, one had received a lung transplant, and one had multi-organ failure post-sepsis. Common medications prescribed included vasopressors, antibiotics, and sedatives. All cases showed signs of markedly impaired peripheral perfusion whilst on ECMO and seven developed increasing areas of foot necrosis. Outcomes include two bilateral below knee amputations, two multiple digital amputations, one Reflex Sympathetic Dystrophy Syndrome, three pressure injuries, and three deaths. Conclusion Necrosis of the feet appears to occur more readily in younger people requiring ECMO treatment than others in ICU. The authors are conducting further studies to investigate associations between particular infections, medical history, medications, or machine techniques and severe foot complications. Some of these early results will also be presented at this conference.
Resumo:
Successful control of sexually transmitted diseases (STDs) through vaccination will require the development of vaccine strategies that target protective immunity to both the female and male reproductive tracts (MRT). In the male, the immune privileged nature of the male reproductive tract provides a barrier to entry of serum immunoglobulins into the male reproductive ducts, thereby preventing the induction of protective immunity using conventional injectable vaccination techniques. In this study we investigated the potential of intranasal (IN) immunization to elicit anti-chlamydial immunity in BALB/c male mice. Intranasal immunization with Chlamydia muridarum major outer membrane protein (MOMP) admixed with cholera toxin (CT) resulted in high levels of MOMP-specific IgA in prostatic fluids (PF) and MOMP-specific IgA-secreting cells in the prostate. Prostatic fluid IgA inhibited in vitro infection of McCoy cells with C. muridarum. Using RT-PCR we also show that mRNA for the polymeric immunoglobulin receptor (PIgR), which transports IgA across mucosal epithelia, is expressed only in the prostate but not in other regions of the male reproductive ducts upstream of the prostate. These data suggest that using intranasal immunization to target IgA to the prostate may protect males against STDs while at the same time maintaining the state of immune privilege within the MRT.
Resumo:
Burn injury is associated with disabling scar formation which impacts on many aspects of the patient's life. Previously we have shown that the fetus heals a deep dermal burn in a scarless fashion. Amniotic membrane (AM) is the outermost fetal tisue and has beeen used as a dressing in thermal injuries, though there is little data to support this use. To assess the efficacy of AM in scar minimisation after deep dermal burn wound, we conducted a randomised controlled study in the 1-month lamb. Lambs were delivered by caesarian section and the amniotic membranes stored after which lambs were returned to their mothers post-operatively. At 1 month, a standardised deep dermal burn was created under general anaesthesia on both flanks of the lamb. One flank was covered with unmatched AM, the other with paraffin gauze. Animals were sequentially euthanased from Day 3-60 after injury and tissue analysed for histopathology and immunohistochemically for alpha-smooth muscle actin (alphaSMA) content. AM resulted in reduced scar tissue as assessed histopathologically and reduced alphaSMA content. This study provides the first laboratory evidence that AM may reduce scar formation after burn injury.
Resumo:
Chlamydial infection in koalas is common across the east coast of Australia and causes significant morbidity, infertility and mortality. An effective vaccine to prevent the adverse consequences of chlamydial infections in koalas (particularly blindness and infertility in females) would provide an important management tool to prevent further population decline of this species. An important step towards developing a vaccine in koalas is to understand the host immune response to chlamydial infection. In this study, we used the Pepscan methodology to identify B cell epitopes across the Major Outer Membrane Protein (MOMP) of four C. pecorum strains/genotypes that are recognized, either following (a) natural live infection or (b) administration of a recombinant MOMP vaccine. Plasma antibodies from the koalas naturally infected with a C. pecorum G genotype strain recognised the epitopes located in the variable domain (VD) four of MOMP G and also VD4 of MOMP H. By comparison, plasma antibodies from an animal infected with a C. pecorum F genotype strain recognised epitopes in VD1, 2 and 4 of MOMP F, but not from other genotype MOMPs. When Chlamydia-free koalas were immunised with recombinant MOMP protein they produced antibodies not only against epitopes in the VDs but also in conserved domains of MOMP. Naturally infected koalas immunised with recombinant MOMP protein also produced antibodies against epitopes in the conserved domains. This work paves the way for further refinement of a MOMP-based Chlamydia vaccine that will offer wide cross-protection against the variety of chlamydial infections circulating in wild koala populations.
Resumo:
We recently developed a binding assay format by incorporating native transmembrane receptors into artificial phospholipid bilayers on biosensor devices for surface plasmon resonance spectroscopy. By extending the method to surface plasmon-enhanced fluorescence spectroscopy (SPFS), sensitive recording of the association of even very small ligands is enabled. Herewith, we monitored binding of synthetic mono- and oligomeric RGD-based peptides and peptidomimetics to integrins alphavbeta3 and alphavbeta5, after having confirmed correct orientation and functionality of membrane-embedded integrins. We evaluated integrin binding of RGD multimers linked together via aminohexanoic acid (Ahx) spacers and showed that the dimer revealed higher binding activity than the tetramer, followed by the RGD monomers. The peptidomimetic was also found to be highly active with a slightly higher selectivity toward alphavbeta3. The different compounds were also evaluated in in vitro cell adhesion tests for their capacity to interfere with alphavbeta3-mediated cell attachment to vitronectin. We hereby demonstrated that the different RGD monomers were similarly effective; the RGD dimer and tetramer showed comparable IC50 values, which were, however, significantly higher than those of the monomers. Best cell detachment from vitronectin was achieved by the peptidomimetic. The novel SPFS-binding assay platform proves to be a suitable, reliable, and sensitive method to monitor the binding capacity of small ligands to native transmembrane receptors, here demonstrated for integrins.
Resumo:
The acyl composition of membrane phospholipids in kidney and brain of mammals of different body mass was examined. It was hypothesized that reduction in unsaturation index (number of double bonds per 100 acyl chains) of membrane phospholipids with increasing body mass in mammals would be made-up of similar changes in acyl composition across all phospholipid classes and that phospholipid class distribution would be regulated and similar in the same tissues of the different-sized mammals. The results of this study supported both hypotheses. Differences in membrane phospholipid acyl composition (i. e. decreased omega-3 fats, increased monounsaturated fats and decreased unsaturation index with increasing body size) were not restricted to any specific phospholipid molecule or to any specific phospholipid class but were observed in all phospholipid classes. With increase in body mass of mammals both monounsaturates and use of less unsaturated polyunsaturates increases at the expense of the long-chain highly unsaturated omega-3 and omega-6 polyunsaturates, producing decreases in membrane unsaturation. The distribution of membrane phospholipid classes was essentially the same in the different-sized mammals with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) together constituting similar to 91% and similar to 88% of all phospholipids in kidney and brain, respectively. The lack of sphingomyelin in the mouse tissues and higher levels in larger mammals suggests an increased presence of membrane lipid rafts in larger mammals. The results of this study support the proposal that the physical properties of membranes are likely to be involved in changing metabolic rate.
Resumo:
In vitro analyses of basement membrane invasiveness employing Matrigel (a murine tumor extract rich in basement membrane components) have been performed on human breast cancer model systems. Constitutive invasiveness of different human breast cancer (HBC) cell lines has been examined as well as regulation by steroid hormones, growth factors, and oncogenes. Carcinoma cells exhibiting a mesenchymal-like phenotype (vimentin expression, lack of cell border associated uvomorulin) show dramatically increased motility, invasiveness, and metastatic potential in nude mice. These findings support the hypothesis that epithelial to mesenchymal transition (EMT)-like events may be instrumental in the metastatic progression of human breast cancer. The MCF-7 subline MCF-7ADR appears to have undergone such a transition. The importance of such a transition may be reflected in the emergence of vimentin expression as an indicator of poor prognosis in HBC. Matrix degradation and laminin recognition are highlighted as potential targets for antimetastatic therapy, and analyses of laminin attachment and the matrix metalloproteinase (MMP) family in HBC cell lines are summarized. Matrigel-based assays have proved useful in the study of the molecular mechanisms of basement membrane invasiveness, their regulation in HBC cells, and their potential as targets for antimetastatic therapy.
Resumo:
The suggested model for pro-matrix metalloproteinase-2 (proMMP-2) activation by membrane type 1 MMP (MT1-MMP) implicates the complex between MT1-MMP and tissue inhibitor of MMP-2 (TIMP-2) as a receptor for proMMP-2. To dissect this model and assess the pathologic significance of MMP-2 activation, an artificial receptor for proMMP-2 was created by replacing the signal sequence of TIMP-2 with cytoplasmic/transmembrane domain of type II transmembrane mosaic serine protease (MSP-T2). Unlike TIMP-2, MSP-T2 served as a receptor for proMMP-2 without inhibiting MT1-MMP, and generated TIMP-2-free active MMP-2 even at a low level of MT1-MMP. Thus, MSP-T2 did not affect direct cleavage of the substrate testican-1 by MT1-MMP, whereas TIMP-2 inhibited it even at the level that stimulates proMMP-2 processing. Expression of MSP-T2 in HT1080 cells enhanced MMP-2 activation by endogenous MT1-MMP and caused intensive hydrolysis of collagen gel. Expression of MSP-T2 in U87 glioma cells, which express a trace level of endogenous MT1-MMP, induced MMP-2 activation and enhanced cell-associated protease activity, activation of extracellular signal-regulated kinase, and metastatic ability into chick embryonic liver and lung. MT1-MMP can exert both maximum MMP-2 activation and direct cleavage of substrates with MSP-T2, which cannot be achieved with TIMP-2. These results suggest that MMP-2 activation by MT1-MMP potentially amplifies protease activity, and combination with direct cleavage of substrate causes effective tissue degradation and enhances tumor invasion and metastasis, which highlights the complex role of TIMP-2. MSP-T2 is a unique tool to analyze physiologic and pathologic roles of MMP-2 and MT1-MMP in comparison with TIMP-2.
Resumo:
ConA-induced cell surface activation of pro-matrix metalloproteinase-2 (pro-MMP-2) by MDA-MB-231 human breast cancer cells is apparently mediated by up-regulation of membrane type 1 MMP (MT1-MMP) through transcriptional and posttranscriptional mechanisms. Here, we have explored the respective roles of cell surface clustering and protein tyrosine phosphorylation in the ConA- induction effects. Treatment with succinyl-ConA, a variant lacking significant clusterability, partially stimulated MT1-MMP mRNA and protein levels but did not induce MMP-2 activation, suggesting that clustering contributes to the transcriptional regulation by ConA but appears to be critical for the nontranscriptional component. We further found that genistein, an inhibitor of tyrosine phosphorylation, blocked ConA-induced pro-MMP-2 activation and ConA-induced MT1-MMP mRNA level in a dose-dependent manner, implicating tyrosine phosphorylation in the transcriptional aspect. This was confirmed by the dose-dependent promotion of pro-MMP-2 activation by sodium orthovanadate in the presence of suboptimal concentrations of ConA (7.5 μg/ml), with optimal effects seen at 25 μg/g orthovanadate. Genistein did not inhibit the ConA potentiation of MMP-2 activation in MCF-7 cells, in which transfected MT1-MMP is driven by a heterologous promoter, supporting the major implication of phosphotyrosine in the transcriptional component of ConA regulation. These data describe a major signaling event upstream of MT1- MMP induction by ConA and set the stage for further analysis of the nontranscriptional component.
Resumo:
Matrix Metalloproteinase-2 (MMP-2) is secreted as a zymogen, the activation of which has been associated with metastatic progression in human breast cancer (HBC). Concanavalin A (Con A) has been found to induce activation of MMP-2 in invasive HBC cell lines. Con A effects on the expression of mRNA for membrane-type matrix metalloproteinase (MT-MMP), a newly described cell surface-associated MMP, showed a close temporal correlation with induction of MMP-2 activation. It is surprising that MT-MMP mRNA is constitutively present in the uninduced MDA-MB-231 cell, despite a lack of MMP-2 activation. We have used actinomycin D to demonstrate a partial requirement for de novo gene expression in the induction of MMP-2 activation by Con A in MDA-MB-231 HBC cells. Furthermore, this transcriptional response to Con A appeared to require the continued presence of Con A for its manifestation. The nontranscriptional component of the Con A induction manifests rapidly, is quite substantial, and persists strongly despite actinomycin D abrogation of both constitutive and Con A-induced MT-MMP. Cycloheximide analyses suggest that protein synthesis may be involved in this rapid transcription-independent response. These studies suggest that Con A induces MMP-2-activation in part by up-regulation of MT-MMP expression but has a more complicated mode of action, involving additional nontranscriptional effects, which apparently require protein synthesis.