79 resultados para NONSTRANGE BARYONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The possibility of kaon condensation in high-density symmetric nuclear matter is investigated including both s- and p-wave kaon-baryon interactions within the relativistic mean-field (RMF) theory. Above a certain density, we have a collective (D) over bar (S) state carrying the same quantum numbers as the antikaon. The appearance of the (K) over bar (S) state is caused by the time component of the axial-vector interaction between kaons and baryons. It is shown that the system becomes unstable with respect to condensation of K-(K) over bar (S) pairs. We consider how the effective baryon masses affect the kaon self-energy coming from the time component of the axial-vector interaction. Also, the role of the spatial component of the axial-vector interaction on the possible existence of the collective kaonic states is discussed in connection with A-mixing effects in the ground state of high-density matter: Implications of K (K) over bar (S) condensation for high-energy heavy-ion collisions are briefly mentioned. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the production of charmed mesons (D) and baryons (Lambda(c)) in antiproton- proton ((p) over barp) annihilation close to their respective production thresholds. The elementary charm production process is described by either baryon/ meson exchange or by quark/ gluon dynamics. Effects of the interactions in the initial and final states are taken into account rigorously. The calculations are performed in close analogy to our earlier study on (p) over bar -> (Lambda) over bar Lambda and (p) over barp (K) over bar K by connecting the processes via SU(4) flavor symmetry. Our predictions for the (Lambda) over bar (c)Lambda(c) production cross section are in the order of 1 to 7 mb, i. e. a factor of around 10-70 smaller than the corresponding cross sections for (Lambda) over bar Lambda However, they are 100 to 1000 times larger than predictions of other model calculations in the literature. on the other hand, the resulting cross sections for (D) over barD production are found to be in the order of 10(-2) - 10(-1)mu b and they turned out to be comparable to those obtained in other studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1/N(c) expansion in QCD (with N(c) the number of colors) suggests using a potential from meson sector (e.g., Richardson) for baryons. For light quarks a sigma-field has to be introduced to ensure chiral symmetry breaking (chi-SB). It is found that nuclear matter properties can be used to pin down the chi-SB modeling. All masses, M(N), m-sigma, m-omega, are found to scale with density. The equations are solved self-consistently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model for describing hybrid spectroscopy similar to the diquark model for baryons is presented. Mass and r.m.s. radii are calculated and compared with experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The experimental mesonic density of states ρmeson(m)≃ρbaryon(m) from 0.9 to 1.3 GeV. In this region the ρmeson fits the ρ(m) deduced for it from discrete bag model states. Beyond 1.3 GeV one can expect exotic mesons. If ρmeson is replaced by the baryon density (as suggested by string model studies [D. Kutasov and N. Seiberg, Nucl. Phys. B 358 (1991) 600; P.G.O. Freund and J.L. Rosner, Phys. Rev. Lett. 68 (1992) 765]), agreement with theory is obtained up to 1.7 GeV. Beyond 1.7 GeV exotic baryons may be expected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quark-diquark approximation is used to investigate the mass spectroscopy of the spin-1/2 baryons belonging to the SU(3)-flavor group in a nonrelativistic potential approach. The baryon spectra obtained are confronted with relativistic results and experimental data. Root-mean-square radii are also calculated. © 1993 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We support the idea that the baryon, B with mass MB, couples to its current with a coupling λ2 B ∼ 0.71 M6 B from an analysis of magnetic moment sum rules. And we find a sum rule among the experimental magnetic moments which is independent of the parameters of QCDSR. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the equation of state for neutron matter using the Walecka model including quantum corrections for baryons and sigma mesons through a realignment of the vacuum. We next use this equation of state to calculate the radius, mass, and other properties of rotating neutron stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A measurement technique of charm baryons lifetimes from hadro-production data was presented. The measurement verified the lifetime analysis procedure in a sample with higher statistical precision. Other effects studied include mass reflections; effects of the presence of a second charm particle; and mismeasurement of charm decays. Monte carlo simulations were used for the detailed study of systematic effects using the charm data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first experimental evidence for one of the six predicted baryon states which contain two valence charmed quarks-the doubly charmed baryons. As such, there were many predictions of the masses and other properties of these states. The properties of doubly charmed baryons provide a new window into the structure of baryonic matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss phenomenological tests for the frozen infrared behavior of the running coupling constant and gluon propagators found in some solutions of Schwinger-Dyson equations of the gluonic sector of QCD. We verify that several observables can be used in order to select the different expressions of αs found in the literature. We test the effect of the nonperturbative coupling in the τ-lepton decay rate into nonstrange hadrons, in the ρ vector meson helicity density matrix that are produced in the χc2 → ρρ decay, in the photon to pion transition form factor, and compute the cross-sections for elastic proton-proton scattering and exclusive ρ production in deep inelastic scattering. These quantities depend on the infrared behavior of the coupling constant at different levels, we discuss the reasons for this dependence and argue that the existent and future data can be used to test the approximations performed to solve the Schwinger-Dyson equations and they already seem to select one specific infrared behavior of the coupling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the effect of shear and rotation on results previously obtained dealing with the application of the spherical collapse model (SCM) to generalized Chaplygin gas (gCg)-dominated universes. The system is composed of baryons and gCg and the collapse is studied for different values of the parameter α of the gCg. We show that the joint effect of shear and rotation is that of slowing down the collapse with respect to the simple SCM. This result is of utmost importance for the so-called unified dark matter models, since the described slowdown in the growth of density perturbations can solve one of the main problems of the quoted models, namely the instability described in previous papers [e.g., H. B. Sandvik, Phys. Rev. D 69, 123524 (2004)] at the linear perturbation level. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q 2. This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q2 = 12 GeV2. This high-Q 2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. © 2013 World Scientific Publishing Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements are presented of the production of primary KS0 and Λ particles in proton-proton collisions at √s=7 TeV in the region transverse to the leading charged-particle jet in each event. The average multiplicity and average scalar transverse momentum sum of KS0 and Λ particles measured at pseudorapidities |η|<2 rise with increasing charged-particle jet pT in the range 1-10 GeV/c and saturate in the region 10-50 GeV/c. The rise and saturation of the strange-particle yields and transverse momentum sums in the underlying event are similar to those observed for inclusive charged particles, which confirms the impact-parameter picture of multiple parton interactions. The results are compared to recent tunes of the pythia Monte Carlo event generator. The pythia simulations underestimate the data by 15%-30% for KS0 mesons and by about 50% for Λ baryons, a deficit similar to that observed for the inclusive strange-particle production in non-single-diffractive proton-proton collisions. The constant strange- to charged-particle activity ratios with respect to the leading jet pT and similar trends for mesons and baryons indicate that the multiparton-interaction dynamics is decoupled from parton hadronization, which occurs at a later stage. © 2013 CERN, for the CMS Collaboration Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)