871 resultados para NEUTROPHIL MIGRATION
Resumo:
Objective: The objective of this study was to investigate the mediators and the resident peritoneal cells involved in the neutrophil migration (NM) induced by mineral trioxide aggregate (MTA) in mice. Study design: MTA (25 mg/cavity) was injected into normal and pretreated peritoneal cavities (PC) with indomethacin (IND), dexamethasone (DEX), BWA4C, U75302, antimacrophage inflammatory protein-2 (MIP-2), and anti-interleukin-1β (IL-1β) antibodies and the NM was determined. The role of macrophage (MO) and mast cells (MAST) was determined by administration of thioglycollate 3% or 48/80 compound, respectively. The concentration of IL-1β and MIP-2 exudates was measured by ELISA. Results: MTA induced dose- and time-dependent NM into mice PC, with the participation of MO and MAST. NM was inhibited by DEX, BWA4C, and U75302, as well as anti-MIP-2 and anti-IL-1β antibodies. In the exudates, IL-1β and MIP-2 were detected. Conclusions: This study suggests that MTA induces NM via a mechanism dependent on MAST and MO mediated by IL-1β, MIP-2, and LTB4. © 2008 Mosby, Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Endothelin mediates neutrophil recruitment during innate inflammation. Herein we address whether endothelin-1 (ET-1) is involved in neutrophil recruitment in adaptive inflammation in mice, and its mechanisms. Pharmacological treatments were used to determine the role of endothelin in neutrophil recruitment to the peritoneal cavity of mice challenged with antigen (ovalbumin) or ET-1. Levels of ET-1, tumour necrosis factor a (TNF alpha), and CXC chemokine ligand 1 (CXCL1) were determined by enzyme-linked immunosorbent assay. Neutrophil migration and flow cytometry analyses were performed 4 h after the intraperitoneal stimulus. ET-1 induced dose-dependent neutrophil recruitment to the peritoneal cavity. Treatment with the non-selective ETA/ETB receptor antagonist bosentan, and selective ETA or ETB receptor antagonists BQ-123 or BQ-788, respectively, inhibited ET-1- and ovalbumin-induced neutrophil migration to the peritoneal cavity. In agreement with the above, the antigen challenge significantly increased levels of ET-1 in peritoneal exudates. The ET-1- and ovalbumin-induced neutrophil recruitment were reduced in TNFR1 deficient mice, and by treatments targeting CXCL1 or CXC chemokine receptor 2 (CXCR2); further, treatment with bosentan, BQ-123, or BQ-788 inhibited ET-1- and antigen-induced production of TNFa and CXCL1. Furthermore, ET-1 and ovalbumin challenge induced an increase in the number of cells expressing the Gr1(+) markers in the granulocyte gate, CD11c+ markers in the monocyte gate, and CD4(+) and CD45(+) (B220) markers in the lymphocyte gate in an ETA-and ETB-dependent manner, as determined by flow cytometry analysis, suggesting that ET-1 might be involved in the recruitment of neutrophils and other cells in adaptive inflammation. Therefore, the present study demonstrates that ET-1 is an important mediator for neutrophil recruitment in adaptive inflammation via TNF alpha and CXCL1/CXCR2-dependent mechanism.
Resumo:
Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) and other cyclic nitroxides have been shown to inhibit the chlorinating activity of myeloperoxidase (MPO) in vitro and in cells. To examine whether nitroxides inhibit MPO activity in vivo we selected acute carrageenan-induced inflammation on the rat paw as a model. Tempol and three more hydrophobic 4-substituted derivatives (4-azido, 4-benzene-Sulfonyl, and 4-(4-phenyl-1H-1,2,3-triazol-1-yl)) were synthesized, and their ability to inhibit the in vitro chlorinating activity of MPO and carrageenan-induced inflammation in rat paws was evaluated. All of the tested nitroxides inhibited the chlorinating activity of MPO in vitro with similar IC50 values (between 1.5 and 1.8 mu M). In vivo, the attenuation of carrageenan-induced inflammation showed some correlation with the lipophilicity of the nitroxide at early time points but the differences in the effects were small (< 2-fold) compared with the differences in lipophilicity (> 200-fold). No inhibition of MPO activity in vivo was evident because the levels of MPO activity in rat paws correlated with the levels of MPO protein'. Likewise, paw edema, levels of nitrated and oxidized proteins, and levels of plasma exudation correlated with the levels of MPO protein in the paws of the animals that were untreated or treated with the nitroxides. The effects of the nitroxides in vivo were compared with those of 4-aminobenzoic hydrazide and of colchicine. Taken together, the results indicate that nitroxides attenuate carrageenan-induced inflammation mainly by reducing neutrophil migration and the resulting MPO-mediated damage. Accordingly, tempol was shown to inhibit rat neutrophil migration in vitro. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In acute neuroinflammatory states such as meningitis, neutrophils cross the blood-brain barrier (BBB) and contribute to pathological alterations of cerebral function. The mechanisms that govern neutrophil migration across the BBB are ill defined. Using live-cell imaging, we show that LPS-stimulated BBB endothelium supports neutrophil arrest, crawling, and diapedesis under physiological flow in vitro. Investigating the interactions of neutrophils from wild-type, CD11a(-/-), CD11b(-/-), and CD18(null) mice with wild-type, junctional adhesion molecule-A(-/-), ICAM-1(null), ICAM-2(-/-), or ICAM-1(null)/ICAM-2(-/-) primary mouse brain microvascular endothelial cells, we demonstrate that neutrophil arrest, polarization, and crawling required G-protein-coupled receptor-dependent activation of β2 integrins and binding to endothelial ICAM-1. LFA-1 was the prevailing ligand for endothelial ICAM-1 in mediating neutrophil shear resistant arrest, whereas Mac-1 was dominant over LFA-1 in mediating neutrophil polarization on the BBB in vitro. Neutrophil crawling was mediated by endothelial ICAM-1 and ICAM-2 and neutrophil LFA-1 and Mac-1. In the absence of crawling, few neutrophils maintained adhesive interactions with the BBB endothelium by remaining either stationary on endothelial junctions or displaying transient adhesive interactions characterized by a fast displacement on the endothelium along the direction of flow. Diapedesis of stationary neutrophils was unchanged by the lack of endothelial ICAM-1 and ICAM-2 and occurred exclusively via the paracellular pathway. Crawling neutrophils, although preferentially crossing the BBB through the endothelial junctions, could additionally breach the BBB via the transcellular route. Thus, β2 integrin-mediated neutrophil crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed BBB.
Resumo:
Neutrophils are an essential component of innate immunity, serving to provide an immediate response to microbial invasion. In response to emergency situations such as an infection, serum levels of granulocyte colony-stimulating factor (G-CSF) are induced, causing a boost in neutrophil production and a rapid mobilization of bone marrow neutrophils to the blood, where they can circulate to clear foreign pathogens. Signal transducer and activator of transcription 3 (STAT3) is a principal downstream signaling intermediate of the G-CSF receptor. Mice null for STAT3 are embryonic lethal; therefore, to examine the role that STAT3 has in granulocytic development and function in vivo, we utilized a conditional knockout mouse that deletes functional STAT3 in the hematopoietic system (referred to herein as STAT3-deficient). Using this model, we show that STAT3 is required for G-CSF-induced expansion of granulocytic progenitor cells within the bone marrow and for acute G-CSF-dependent neutrophil mobilization into the blood. Thus, STAT3 has a critical role in the immediate G-CSF-response in vivo. Sustained G-CSF exposure causes skewed granulocytic production and mobilization in STAT3-deficient mice, suggesting an atypical granulocytic developmental pathway. To determine if STAT3-deficient neutrophils were functional, we examined neutrophil chemotaxis, since neutrophil function relies on proper chemoattractant-induced migration to infected tissue sites. STAT3-deficient neutrophils have impaired chemotaxis in response to the potent neutrophil chemoattractants MIP-2 and KC, both ligands for the chemokine receptor CXCR2. Additionally, STAT3-deficient mice have a defect in NIIP-2-induced acute neutrophil mobilization in vivo. Chemotaxis in response to fMLP and SDF-1, which utilize distinct seven-transmembrane chemokine receptors, was similar between wild type and STAT3-deficient neutrophils, suggesting that STAT3 specifically regulates CXCR2-mediated migration. MIP-2-induced activation of the Raf/MEK/ERK signaling cascade, which we show is required for MIP-2-dependent neutrophil chemotaxis, was impaired in STAT3-deficient neutrophils. Interestingly, acute G-CSF administration induced CXCR2 expression and Raf/MEK/ERK activation in neutrophils from wild type mice, whereas these responses were abrogated in neutrophils from STAT3-deficient mice. Thus, STAT3 regulation of CXCR2 functions may also contribute to STAT3's control of the acute G-CSF mobilization response. These combined results place STAT3 as a critical intermediate in neutrophil migration and G-CSF-induced neutrophil production responses required for emergency granulopoiesis. ^
Resumo:
Inflammation is a primary pathological process. The development of an inflammatory reaction involves the movement of white blood cells through the endothelial lining of blood vessels into tissues. This process of transendothelial cell migration of neutrophils has been shown to involve neutrophil beta 2 integrins (CD18) and endothelial cell platelet-endothelium cell adhesion molecules (PECAM-1; CD31). We now show that F(ab')2 fragments of the monoclonal antibody B6H12 against integrin-associated protein (IAP) blocks the transendothelial migration of neutrophils stimulated by an exogenous gradient of the chemokine interleukin 8 (IL-8; 60% inhibition), by the chemotactic peptide N-formyl-methionylleucylphenylalanine (FMLP; 76% inhibition), or by the activation of the endothelium by the cytokine tumor necrosis factor alpha (98% inhibition). The antibody has two mechanisms of action: on neutrophils it prevents the chemotactic response to IL-8 and FMLP, and on endothelium it prevents an unknown but IL-8-independent process. Blocking antibodies to IAP do not alter the expression of adhesion proteins or production of IL-8 by endothelial cells, and thus the inhibition of neutrophil transendothelial migration is selective. These data implicate IAP as the third molecule essential for neutrophil migration through endothelium into sites of inflammation.
Resumo:
Inadequate blood flow to an organ, ischaemia, may lead to both local and remote tissue injury characterized by oedema, increased microvascular permeability to protein and degradation of connective tissue components. This damage is probably caused by the accumulation and inappropriate activation of neutrophils which occurs when the tissue is reperfused. To test this hypothesis a number of in vitro models of the sequential stages of ischaemia/reperfusion injury were examined. Methods were initially developed to examine the adhesion of neutrophils to monolayers of a cultured endothelial cell line (ECV304) after periods of hypoxia and reoxygenation. Neutrophil migration in response to factors secreted by the treated endothelial cells was then assessed. The genesis of an inappropriate oxidative burst by the neutrophil upon exposure to endothelial chemoattractants and adhesion molecules was also measured. Finally to appraise how tissue function might be affected by endothelial cell hypoxia the contractility of vascular smooth muscle was examined. Neutrophil adhesion to ECV304 cells, which had been hypoxic for 4 hours and then reoxygenated for 30 minutes, was significantly increased. This response was probably initiated by reactive oxygen species (ROS) generated by the endothelial cells. Blockage of their production by allopurinol reduced the heightened adhesion. Similarly removal of ROS by superoxide dismutase or catalase also attenuated adhesion. ROS generation in turn caused the release of a soluble factor (s) which induced a conformational change on the neutrophil surface allowing it to bind to the intercellular adhesion molecule 1 (ICAM-1) on the endothelial cell. Soluble factor (s) from hypoxia/reoxygenated endothelial cells also had a powerful neutrophil chemoattractant ability. When neutrophils were exposed to both hypoxic/reoxygenated endothelial cells and the soluble factor (s) released by them a large oxidative burst was elicited. This response was greatest immediately after reoxygenation and one hour later was diminishing suggesting at least one of the components involved was labile. Analysis of the supernatant from hypoxic/reoxygenated endothelial cell cultures and studies using inhibitors of secretion suggested platelet activating factor (PAF) may be a major component in this overall sequence of events. Lesser roles for IL-8, TNF and LTB4 were also suggested. The secretory products from hypoxia/reoxygenated endothelial cells also affected smooth muscle contractility having an anti-vasoconstrictor or relaxation property, similar to that exerted by PAF.
Resumo:
P2X7 receptors play an important role in inflammatory hyperalgesia, but the mechanisms involved in their hyperalgesic role are not completely understood. In this study, we hypothesized that P2X7 receptor activation induces mechanical hyperalgesia via the inflammatory mediators bradykinin, sympathomimetic amines, prostaglandin E2 (PGE2), and pro-inflammatory cytokines and via neutrophil migration in rats. We found that 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (BzATP), the most potent P2X7 receptor agonist available, induced a dose-dependent mechanical hyperalgesia that was blocked by the P2X7 receptor-selective antagonist A-438079 but unaffected by the P2X1,3,2/3 receptor antagonist TNP-ATP. These findings confirm that, although BzATP also acts at both P2X1 and P2X3 receptors, BzATP-induced hyperalgesia was mediated only by P2X7 receptor activation. Co-administration of selective antagonists of bradykinin B1 (Des-Arg(8)-Leu(9)-BK (DALBK)) or B2 receptors (bradyzide), β1 (atenolol) or β2 adrenoceptors (ICI 118,551), or local pre-treatment with the cyclooxygenase inhibitor indomethacin or the nonspecific selectin inhibitor fucoidan each significantly reduced BzATP-induced mechanical hyperalgesia in the rat hind paw. BzATP also induced the release of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1), an effect that was significantly reduced by A-438079. Co-administration of DALBK or bradyzide with BzATP significantly reduced BzATP-induced IL-1β and CINC-1 release. These results indicate that peripheral P2X7 receptor activation induces mechanical hyperalgesia via inflammatory mediators, especially bradykinin, which may contribute to pro-inflammatory cytokine release. These pro-inflammatory cytokines in turn may mediate the contributions of PGE2, sympathomimetic amines and neutrophil migration to the mechanical hyperalgesia induced by local P2X7 receptor activation.
Resumo:
ATP, via activation of P2X3 receptors, has been highlighted as a key target in inflammatory hyperalgesia. Therefore, the aim of this study was to confirm whether the activation of P2X3 receptors in the gastrocnemius muscle of rats induces mechanical muscle hyperalgesia and, if so, to analyze the involvement of the classical inflammatory mediators (bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines and neutrophil migration) in this response. Intramuscular administration of the non-selective P2X3 receptor agonist α,β-meATP in the gastrocnemius muscle of rats induced mechanical muscle hyperalgesia, which, in turn, was prevented by the selective P2X3 and P2X2/3 receptors antagonist A-317491, the selective bradykinin B1-receptor antagonist Des-Arg9-[Leu8]-BK (DALBK), the cyclooxygenase inhibitor indomethacin, the β1- or β2-adrenoceptor antagonist atenolol and ICI 118,551, respectively. Also, the nonspecific selectin inhibitor fucoidan. α,β-meATP induced increases in the local concentration of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β), which were reduced by bradykinin antagonist. Finally, α,β-meATP also induced neutrophil migration. Together, these findings suggest that α,β-meATP induced mechanical hyperalgesia in the gastrocnemius muscle of rats via activation of peripheral P2X3 receptors, which involves bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines release and neutrophil migration. It is also indicated that bradykinin is the key modulator of the mechanical muscle hyperalgesia induced by P2X3 receptors. Therefore, we suggest that P2X3 receptors are important targets to control muscle inflammatory pain.
Resumo:
Background: Caspase-1 is a cysteine protease responsible for the processing and secretion of IL-1 beta and IL-18, which are closely related to the induction of inflammation. However, limited evidence addresses the participation of caspase-1 in inflammatory pain. Here, we investigated the role of caspase-1 in inflammatory hypernociception (a decrease in the nociceptive threshold) using caspase-1 deficient mice (casp1-/-). Results: Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. The production of cytokines, PGE(2) and neutrophil migration were evaluated by ELISA, radioimmunoassay and myeloperoxidase activity, respectively. The interleukin (IL)-1 beta and cyclooxygenase (COX)-2 protein expression were evaluated by western blotting. The mechanical hypernociception induced by intraplantar injection of carrageenin, tumour necrosis factor (TNF)alpha and CXCL1/KC was reduced in casp1-/- mice compared with WT mice. However, the hypernociception induced by IL-1 beta and PGE(2) did not differ in WT and casp1-/- mice. Carrageenin-induced TNF-alpha and CXCL1/KC production and neutrophil recruitment in the paws of WT mice were not different from casp1-/- mice, while the maturation of IL-1 beta was reduced in casp1-/- mice. Furthermore, carrageenin induced an increase in the expression of COX-2 and PGE(2) production in the paw of WT mice, but was reduced in casp1-/- mice. Conclusion: These results suggest that caspase-1 plays a critical role in the cascade of events involved in the genesis of inflammatory hypernociception by promoting IL-1 beta maturation. Because caspase-1 is involved in the induction of COX-2 expression and PGE(2) production, our data support the assertion that caspase-1 is a key target to control inflammatory pain.
Resumo:
Background: The leaves and the fruits from Syzygium jambolanum DC.(Myrtaceae), a plant known in Brazil as sweet olive or 'jambolao', have been used by native people to treat infectious diseases, diabetes, and stomachache. Since the bactericidal activity of S. jambolanum has been confirmed in vitro, the aim of this work was to evaluate the effect of the prophylactic treatment with S. jambolanum on the in vivo polymicrobial infection induced by cecal ligation and puncture (CLP) in mice. Methods: C57BI/6 mice were treated by the subcutaneous route with a hydroalcoholic extract from fresh leaves of S. jambolanum (HCE). After 6 h, a bacterial infection was induced in the peritoneum using the lethal CLP model. The mice were killed 12 h after the CLP induction to evaluate the cellular influx and local and systemic inflammatory mediators' production. Some animals were maintained alive to evaluate the survival rate. Results: The prophylactic HCE treatment increased the mice survival, the neutrophil migration to infectious site, the spreading ability and the hydrogen peroxide release, but decreased the serum TNF and nitrite. Despite the increased migration and activation of peritoneal cells the HCE treatment did not decrease the number of CFU. The HCE treatment induced a significant decrease on the bone marrow cells number but did not alter the cell number of the spleen and lymph node. Conclusion: We conclude that the treatment with S. jambolanum has a potent prophylactic antiseptic effect that is not associated to a direct microbicidal effect but it is associated to a recruitment of activated neutrophils to the infectious site and to a diminished systemic inflammatory response.
Resumo:
Sepsis induces a systemic inflammatory response leading to tissue damage and cell death. LPS tolerance affects inflammatory response. To comprehend potential new mechanisms of immune regulation in endotoxemia, we examined macrophage mRNA expression by macroarray affected by LPS tolerance. LPS tolerance was induced with subcutaneous administration of 1 mg/kg/day of LPS over 5 days. Macrophages were isolated from the spleen and the expression of 1200 genes was quantitatively analyzed by the macroarray technique. The tolerant group displayed relevant changes in the expression of 84 mRNA when compared to naive mice. A functional group of genes related to cell death regulation was identified. PARP-1, caspase 3, FASL and TRAIL genes were confirmed by RT-PCR to present lower expression in tolerant mice. In addition, reduced expression of the pro-inflammatory genes TNF-alpha and IFN-gamma in the tolerant group was demonstrated. Following this, animals were challenged with polymicrobial sepsis. Flow cytometry analysis showed reduced necrosis and apoptosis in macrophages from the tolerant group compared to the naive group. Finally, a survival study showed a significant reduction in mortality in the tolerant group. Thus, in the current study we provide evidence for the selective reprogramming of the gene expression of cell death pathways during LPS tolerance and link these changes to protection from cell death and enhanced survival rates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Extensive lymphocyte apoptosis may be an important cause of immune suppression in sepsis. Here we investigated the effect of LPS tolerance on lymphocyte apoptosis in an experimental model of polymicrobial infection. Tolerance was induced by the injection of lipopolysaccharide (1.0 mg/kg/subcutaneously) once a day for 5 days. Macroarray analysis of mRNA isolated from T-(CD4) lymphocytes was used to identify genes that are differentially expressed during LPS tolerance. In addition, assessment of the expression of apoptosis-associated lymphocyte gene products and apoptotic events was performed on the 8th day; 6 h after the terminal challenge with polymicrobial infection or high-dose LPS administration. Survival studies with polymicrobial infection were also conducted. LPS tolerance induced a broad reprogramming of cell death pathways, including a suppression of receptor-mediated and mitochondrial apoptotic pathways, inflammatory caspases, alternate apoptotic pathways, as well as reduced expression of genes involved in necrosis. These alterations led to a marked resistance of lymphocytes against cell death during the subsequent period of sepsis. In addition, LPS tolerance produced an increased differentiation of T-lymphocytes to T(H)1 and T(H)2, with a T(H)1 differentiation predominance. Thus, in the current study we provide an evidence for a marked reprogramming of gene expression of multiple cell death pathways during LPS tolerance. These alterations may play a significant role in the observed protection of the animals from a subsequent lethal polymicrobial sepsis challenge. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Objective. To evaluate the antiinflammatory effects of RC-3095 in 2 experimental models of arthritis, collagen-induced arthritis (CIA) and antigen-induced arthritis (AIA), and to determine the mechanisms of action involved. Methods. RC-3095 was administered daily to mice with CIA and mice with AIA, after induction of disease with methylated bovine serum albumin. Disease incidence and severity were assessed using a clinical index and evaluation of histologic features, respectively. In mice with CIA, gastrin-releasing peptide receptor (GRPR) was detected by immunohistochemical analysis, while in mice with AIA, migration of neutrophils, presence of glycosaminoglycans, and lymphocyte proliferation, determined using the MTT assay, were assessed. Expression of cytokines interleukin-17 (IL-17), IL-1 beta, and tumor necrosis factor alpha (TNF alpha) was evaluated in all mouse knees using enzyme-linked immunosorbent assay. Treg cell production was assessed by flow cytometry in the joints of mice with AIA. Results. In mice with AIA, administration of RC-3095 reduced neutrophil migration, mechanical hypernociception, and proteoglycan loss. These findings were associated with inhibition of the levels of all 3 proinflammatory cytokines, decreased lymphocyte proliferation, and increased Treg cell numbers. In the CIA model, treatment with RC-3095 led to a significant reduction in arthritis clinical scores and the severity of disease determined histologically. Synovial inflammation, synovial hyperplasia, pannus formation, and extensive erosive changes were all dramatically reduced in the arthritic mice treated with RC-3095. Furthermore, arthritic mice treated with RC-3095 showed a significant reduction in the concentrations of IL-17, IL-1 beta, and TNF alpha, and showed a diminished expression of GRPR. Conclusion. These findings suggest that the GRP pathway has a significant role in chronic arthritis, and its inhibition can be explored as a possible therapeutic strategy in rheumatoid arthritis.