941 resultados para NEURONAL DEGENERATION
Resumo:
Paraneoplastic neurologic disorders (PNDs) are believed to be autoimmune neuronal degenerations that develop in some patients with systemic cancer. A series of genes encoding previously undiscovered neuronal proteins have been cloned using antiserum from PND patients. Identification of these onconeural antigens suggests a reclassification of the disorders into four groups: those in which neuromuscular junction proteins, nerve terminal/vesicle-associated proteins, neuronal RNA binding proteins, or neuronal signal-transduction proteins serve as target antigens. This review considers insights into basic neurobiology, tumor immunology, and autoimmune neuronal degeneration offered by the characterization of the onconeural antigens.
Resumo:
In Alzheimer disease (AD) the amyloid beta-peptide (A beta) accumulates in plaques in the brain. A beta can be neurotoxic by a mechanism involving induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels ([Ca2+]i). In light of evidence for an inflammatory response in the brain in AD and reports of increased levels of tumor necrosis factor (TNF) in AD brain we tested the hypothesis that TNFs affect neuronal vulnerability to A beta. A beta-(25-35) and A beta-(1-40) induced neuronal degeneration in a concentration- and time-dependent manner. Pretreatment of cultures for 24 hr with TNF-beta or TNF-alpha resulted in significant attenuation of A beta-induced neuronal degeneration. Accumulation of peroxides induced in neurons by A beta was significantly attenuated in TNF-pretreated cultures, and TNFs protected neurons against iron toxicity, suggesting that TNFs induce antioxidant pathways. The [Ca2+]i response to glutamate (quantified by fura-2 imaging) was markedly potentiated in neurons exposed to A beta, and this action of A beta was suppressed in cultures pretreated with TNFs. Electrophoretic mobility-shift assays demonstrated an induction of a kappa beta-binding activity in hippocampal cells exposed to TNFs. Exposure of cultures to I kappa B (MAD3) antisense oligonucleotides, a manipulation designed to induce NF-kappa B, mimicked the protection by TNFs. These data suggest that TNFs protect hippocampal neurons against A beta toxicity by suppressing accumulation of ROS and Ca2+ and that kappa B-dependent transcription is sufficient to mediate these effects. A modulatory role for TNF in the neurodegenerative process in AD is proposed.
Resumo:
Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ±1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTPinduced neuronal degeneration in the retina, in similarity to mechanisms thought to underlie neuronal death in the Parkinson’s diseased brain and neurodegenerative diseases of the retina proper.
Resumo:
The density of axons in the optic nerve, olfactory tract and corpus callosum was quantified in non-demented elderly subjects and in Alzheimer’s disease (AD) using an image analysis system. In each fibre tract, there was significant reduction in the density of axons in AD compared with non-demented subjects, the greatest reductions being observed in the olfactory tract and corpus callosum. Axonal loss in the optic nerve and olfactory tract was mainly of axons with smaller myelinated cross-sectional areas. In the corpus callosum, a reduction in the number of ‘thin’ and ‘thick’ fibres was observed in AD, but there was a proportionally greater loss of the ‘thick’ fibres. The data suggest significant degeneration of white matter fibre tracts in AD involving the smaller axons in the two sensory nerves and both large and small axons in the corpus callosum. Loss of axons in AD could reflect an associated white matter disorder and/or be secondary to neuronal degeneration.
Resumo:
Pathological changes in striate (B17, V1) and extrastriate (B18, V2) visual cortex were studied in variant Creutzfeldt-Jakob disease (vCJD). No differences in densities of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of prion protein (PrP) were greater in B18. PrP deposit densities in B17 and B18 were positively correlated. Diffuse deposit density in B17 was negatively correlated with the density of surviving neurons in B18. The vacuoles either exhibited a density peak in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse deposits were most frequent in laminae II/III and florid deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI than in B17. Hence, both striate and extrastriate visual cortex is affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 appears to be associated with diffuse PrP deposit formation in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD.
Resumo:
The frequency of morphological abnormalities in neuronal perikarya was studied in the cerebral cortex in cases of sporadic CJD (sCJD) and in elderly control patients. Three hypotheses were tested, namely that the proportion of neurons exhibiting abnormal morphology was increased: (i) in sCJD compared with control patients; (ii) in sCJD, in areas with significant prion protein (PrP) deposition compared with regions with little or no PrP deposition; and (iii) when neurons were spatially associated with a PrP deposit compared with neurons between PrP deposits. Changes in cell shape (swollen or atrophic cell bodies), nuclei (displaced, indistinct, shrunken or absent nuclei; absence of nucleolus), and cytoplasm (dense or pale cytoplasm, PrP positive cytoplasm, vacuolation) were commonly observed in all of the cortical areas studied in the sCJD cases. The proportion of neurons exhibiting each type of morphological change was significantly increased in sCJD compared with age-matched control cases. In sCJD, neuronal abnormalities were present in areas with little PrP deposition, but at significantly lower frequencies compared with areas with significant densities of PrP deposits. Abnormalities of cell shape, nucleus and the presence of cytoplasmic vacuolation were increased when the neurons were associated with a PrP deposit, but fewer of these neurons were PrP-positive compared with neurons between deposits. The data suggest significant neuronal degeneration in the cerebral cortex in sCJD in areas without significant PrP deposition and a further phase of neuronal degeneration associated with the appearance of PrP deposits.
Resumo:
The spatial patterns of the diffuse, primitive, and classic beta-amyloid (Abeta) deposits was studied in the frontal and temporal cortex in cases of Alzheimer’s disease (AD) expressing different apolipoprotein (Apo E) genotypes. No significant differences in the density of the three Abeta deposit subtypes were observed in individuals expressing genotypes e2/3 and e3/3 compared with those expressing e3/4 and e4/4. In all patients, Abeta deposit subtypes occurred in the tissue in clusters. Chi-square contingency analyses of the data suggested that the cluster size of the diffuse and classic Abeta deposits was unrelated to Apo E genotype. However, the primitive (‘neuritic’) type Abeta deposits occurred more frequently in smaller, denser clusters in individuals expressing genotypes e3/4 and e4/4 compared with those expressing e2/3 and e3/3. Hence, the presence of the e4 allele may be associated with a more specific pattern of neuronal degeneration in the frontal and temporal cortex in AD.
Resumo:
The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function.
Resumo:
The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function. © 2012 Nova Science Publishers, Inc. All rights reserved.
Resumo:
Since the earliest descriptions of Alzheimer's disease (AD), many theories have been advanced as to its cause. These include: (1) exacerbation of aging, (2) degeneration of anatomical pathways, including the cholinergic and cortico-cortical pathways, (3) an environmental factor such as exposure to aluminium, head injury, or malnutrition, (4) genetic factors including mutations of amyloid precursor protein (APP) and presenilin (PSEN) genes and allelic variation in apolipoprotein E (Apo E), (5) mitochondrial dysfunction, (6) a compromised blood brain barrier, (7) immune system dysfunction, and (8) infectious agents. This review discusses the evidence for and against each of these theories and concludes that AD is a multifactorial disorder in which genetic and environmental risk factors interact to increase the rate of normal aging ('allostatic load'). The consequent degeneration of neurons and blood vessels results in the formation of abnormally aggregated 'reactive' proteins such as ß-amyloid (Aß) and tau. Gene mutations influence the outcome of age-related neuronal degeneration to cause early onset familial AD (EO-FAD). Where gene mutations are absent and a combination of risk factors present, Aß and tau only slowly accumulate not overwhelming cellular protection systems until later in life causing late-onset sporadic AD (LO-SAD). Aß and tau spread through the brain via cell to cell transfer along anatomical pathways, variation in the pathways of spread leading to the disease heterogeneity characteristic of AD.
Resumo:
International audience
Resumo:
This randomized and controlled trial investigated whether the increase in elite training at different altitudes altered the oxidative stress biomarkers of the nervous system. This is the first study to investigate four F4-neuroprostanes and four F2-dihomo-isoprostanes quantified in 24-hour urine. The quantification was carried out by Ultra High Pressure Liquid Chromatography-triple Quadrupole-Tandem Mass Spectrometry (UHPLC-QqQ-MS/MS). Sixteen elite triathletes agreed to participate in the project. They were randomized in two groups, a group submitted to Altitude Training (n=8) and a group submitted to Sea Level Training (n=8), with a Control group of non-athletes (n=8). After experimental period, the Altitude Training group triathletes gave significant data: 17-epi-17-F2t-dihomo-IsoP (from 5.2 ± 1.4 µg/mL 24 h-1 to 6.6 ± 0.6 µg/mL 24 h-1), ent-7(RS)-7-F2t-dihomo-IsoP (from 6.6 ± 1.7 µg/mL 24 h-1 to 8.6 ± 0.9 µg /mL 24 h-1), and ent-7-epi-7-F2t-dihomo-IsoP (from 8.4 ± 2.2 µg/mL 24 h-1 to 11.3 ± 1.8 µg/mL 24 h-1) increased, while, of the neuronal degeneration-related compounds, only 10-epi-10-F4t-NeuroP (8.4 ± 1.7 µg/mL 24 h-1) and 10-F4t-NeuroP (5.2 ± 2.9 µg/mL 24 h-1) were detected in this group. For the control group and sea level training groups, no significant changes had occurred at the end of the 2-weeks experimental period. Therefore, and as the main conclusion, the training at moderate altitude increased the F4-NeuroPs- and F2-dihomo-isoPs-related oxidative damage of the central nervous system (CNS) compared to similar training at sea level.
Resumo:
Neuroinflammation represents a key hallmark of neurodegenerative diseases and is the result of a complex network of signaling cascades within microglial cells. A positive feedback loop exists between inflammation, microglia activation and protein misfolding processes, that, together with oxidative stress and excitotoxicity, lead to neuronal degeneration. Therefore, targeting this vicious cycle can be beneficial for mitigating neurodegeneration and cognitive decline in central nervous system disorders. At molecular level, GSK-3B and Fyn kinases play a crucial role in microglia activation and their deregulation has been associated to many neurodegenerative diseases. Thus, we envisioned their combined targeting as an effective approach to disrupt this toxic loop. Specifically in this project, a hit compound, based on a 7-azaindole-3-aminothiazole structure, was first identified in a virtual screening campaign, and displayed a weak dual inhibitory activity on GSK-3B and Fyn, unbalanced towards the former. Then, in a commitment to uncover the structural features required for modulating the activity on the two targets, we systematically manipulated this compound by inserting various substitution patterns in different positions. The most potent compounds obtained were advanced to deeper investigations to test their ability of tackling the inflammatory burden also in cellular systems and to unveil their binding modes within the catalytic pocket. The new class of molecules synthesized emerged as a valuable tool to deepen our understanding of the complex network governing the inflammatory events in neurodegenerative disorders.
Resumo:
To investigate the consequences of inborn excessive erythrocytosis, we made use of our transgenic mouse line (tg6) that constitutively overexpresses erythropoietin (Epo) in a hypoxia-independent manner, thereby reaching hematocrit levels of up to 0.89. We detected expression of human Epo in the brain and, to a lesser extent, in the lung but not in the heart, kidney, or liver of tg6 mice. Although no acute cardiovascular complications are observed, tg6 animals have a reduced lifespan. Decreased swim performance was observed in 5-mo-old tg6 mice. At about 7 mo, several tg6 animals developed spastic contractions of the hindlimbs followed by paralysis. Morphological analysis by light and electron microscopy showed degenerative processes in liver and kidney characterized by increased vascular permeability, chronic progressive inflammation, hemosiderin deposition, and general vasodilatation. Moreover, most of the animals showed severe nerve fiber degeneration of the sciatic nerve, decreased number of neuromuscular junctions, and degeneration of skeletal muscle fibers. Most probably, the developing demyelinating neuropathy resulted in muscular degeneration demonstrated in the extensor digitorum longus muscle. Taken together, chronically increased Epo levels inducing excessive erythrocytosis leads to multiple organ degeneration and reduced life expectancy. This model allows investigation of the impact of excessive erythrocytosis in individuals suffering from polycythemia vera, chronic mountain sickness, or in subjects tempted to abuse Epo by means of gene doping.