990 resultados para NANO-EMULSION FORMATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A technique to quantify in real time the microstructural changes occurring during mechanical nanoscale fatigue of ultrathin surface coatings has been developed. Cyclic nanoscale loading, with amplitudes less than 100 nm, is achieved with a mechanical probe miniaturized to fit inside a transmission electron microscope (TEM). The TEM tribological probe can be used for nanofriction and nanofatigue testing, with 3D control of the loading direction and simultaneous TEM imaging of the nano-objects. It is demonstrated that fracture of 10-20 nm thick amorphous carbon films on sharp gold asperities, by a single nanoscale shear impact, results in the formation of < 10 nm diameter amorphous carbon filaments. Failure of the same carbon films after cyclic nanofatigue, however, results in the formation of carbon nanostructures with a significant degree of graphitic ordering, including a carbon onion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mannans are abundant plant polysaccharides found in the endosperm of certain leguminous seeds (guar gum galactomannan, GG; locust bean gum galactomannan, LBG), in the tuber of the konjac plant (konjac glucomannan, KGM), and in softwoods (galactoglucomannan, GGM). This study focused on the effects of the chemical structure of mannans on their film-forming and emulsion-stabilizing properties. Special focus was on spruce GGM, which is an interesting new product from forest biorefineries. A plasticizer was needed for the formation of films from mannans other than KGM and the optimal proportion was 40% (w/w of polymers) glycerol or sorbitol. Galactomannans with lower galactose content (LBG, modified GG) produced films with higher elongation at break and tensile strength. The mechanical properties of GG-based films were improved by decreasing the degree of polymerization of the polysaccharide with moderate mannanase treatments. The improvement of mechanical properties of GGM-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and KGM. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amounts of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation. GGM and KGM were mixed with cellulose nanowhiskers (CNW) to form composite films. Addition of CNW to KGM-based films induced the formation of fiberlike structures with lengths of several millimeters. In GGM-based films, rodlike structures with lengths of tens of micrometers were formed. Interestingly, the notable differences in the film structure did not appear to be related to the mechanical and thermal properties of the films. Permeability properties of GGM-based films were compared to those of films from commercial mannans KGM, GG, and LBG. GGM-based films had the lowest water vapor permeability when compared to films from other mannans. The oxygen permeability of GGM films was of the same magnitude as that of commercial polyethylene / ethylene vinyl alcohol / polyethylene laminate film. The aroma permeability of GGM films was low. All films were transparent in the visible region, but GGM films blocked the light transmission in the ultraviolet region of the spectra. The stabilizing effect of GGM on a model beverage emulsion system was studied and compared to that of GG, LBG, KGM, and cAX. In addition, GG was enzymatically modified in order to examine the effect of the degree of polymerization and the degree of substitution of galactomannans on emulsion stability. Use of GGM increased the turbidity of emulsions both immediately after preparation and after storage of up to 14 days at room temperature. GGM emulsions had higher turbidity than the emulsions containing other mannans. Increasing the storage temperature to +45 ºC led to rapid emulsion breakdown, but a decrease in storage temperature increased emulsion stability after 14 days. A low degree of polymerization and a high degree of substitution of the modified galactomannans were associated with a decrease in emulsion turbidity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper the effects of temperature and high strain rate loading on the formation of various surface patterns in Ni-Al nano-layers are discussed. Effects of boundary conditions on the B2 -> BCT phase transformation in the nano-layer are also discussed. This study is aimed at developing several interesting patterned surface structures in Ni-Al nanolayer by controlling the phase transformation temperature and mechanical loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoconfined synthesized crystalline fullerene mesoporous carbon (C60-FMC) with bimodal pore architectures of 4.95 nm and 10-15 nm pore sizes characterized by XRD, TEM, nitrogen adsorption/ desorption isotherm and solid-state NMR, and the material was used for protein immobilization. The solid-state 13C NMR spectrum of C60-FMC along with XRD, BET and TEM confirms the formation of fullerene mesoporous carbon structure C60-FMC. The immobilization of albumin (from bovine serum, BSA) protein biomolecule in a buffer solution at pH 4.7 was used to determine the adsorption properties of the C60-FMC material and its structural changes investigated by FT-IR. We demonstrated that the C60-FMC with high surface area and pore volumes have excellent adsorption capacity towards BSA protein molecule. Protein adsorption experiments clearly showed that the C60-FMC with bimodal pore architectures (4.95 nm and 10-15 nm) are suitable material to be used for protein adsorption

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly ordered mesoporous carbon (MC) has been synthesized from sucrose, a non-toxic and costeffective source of carbon. X-ray diffraction, N2 adsorption–desorption isotherm and transmission electron micrograph (TEM) were used to characterize the MC. The XRD patterns show the formation of highly ordered mesoporous structures of SBA15 and mesoporous carbon. The N2 adsorptiondesorption isotherms suggest that the MC exhibits a narrow pore-size distribution with high surface area of 1559 m2/g. The potential application of MC as a novel electrode material was investigated using cyclic voltammetry for riboflavin (vitamin B2) and dopamine. MC-modified glassy carbon electrode (MC/GC) shows increase in peak current compared to GC electrode in potassium ferricyanide which clearly suggest that MC/GC possesses larger electrode area (1.8 fold) compared with bare GC electrode. The electrocatalytic behavior of MC/GC was investigated towards the oxidation of riboflavin (vitamin B2) and dopamine using cyclic voltammetry which show larger oxidation current compared to unmodified electrode and thus MC/GC may have the potential to be used as a chemically modified electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition(CVD). A two zone furnace with a temperature profile having a uniform temperature over a length of 20 cm length has been designed and developed. The precursor Azabenzimidazole was taken in a quartz tube and evaporated at 400 degrees C. The dense vapours enter the pyrolysis zone kept at a desired temperature and deposit on the quartz substrates. The FTIR spectrum of the prepared samples shows peaks at 1272 cm(-1) (C-N stretching) and 1600 cm(-1) (C=N) confirms the bonding of nitrogen with carbon. Raman D and G peaks, are observed at 1360 cm(-1) and 1576 cm(-1) respectively. XPS core level spectra of C 1s and N 1s show the formation of pi bonding between carbon and nitrogen atoms. The size of the nano crystals estimated from the SEM images and XRD is similar to 100 nm. In some regions of the sample a maximum of 57 atom % of nitrogen has been observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition. A two zone furnace with a uniform temperature over a length of 20 cm in both the zones was built. The precursor Azabenzimidazole (C6H5N3) taken in a quartz tube was evaporated at zone A and pyrolysed at zone B at a temperature of 800 degrees C. The FTIR spectrum of the prepared sample shows peaks at 1272 cm(-1) and 1591 cm(-1) corresponding to C-N stretching and C=N respectively, which confirms the bonding of nitrogen with carbon. Raman D and G peaks are observed at 1357 cm(-1) and 1560 cm(-1) respectively. X-ray photoelectron spectroscopy (XPS) shows the formation of pi bonding between carbon and nitrogen atoms. These observations along with XRD analysis show the formation of crystallites of alpha-C3N4 and beta-C3N4 in the background of graphitic C3N4. The size of the nanocrystals estimated from the SEM images is similar to 100 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoporous structures are widely used for many applications and hence it Is important to investigate their thermal stability. We study the stability of spherical nanoporous aggregates using phase-field simulations that explore systematically the effect of grain boundary diffusion, surface diffusion, and grain boundary mobility on the pathways for microstructural evolution. Our simulations for different combinations of surface and GB diffusivity and GB mobility show four distinct microstructural pathways en route to 100% density: multiple dosed pores, hollow shells, hollow shells with a core, and multiple interconnected pores. The microstructures from our simulations are consistent with experimental observations in several different systems. Our results have important implications for rational synthesis of hollow nanostructures or aggregates with open pores, and for controlling the stability of nanoporous aggregates that are widely used for many applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis of various morphological micro to nano structured zinc oxide crystals via simple precipitation technique. The growth mechanisms of the zinc oxide nanostructures such as snowflake, rose, platelets, porous pyramid and rectangular shapes were studied in detail under various growth conditions. The precursor powders were prepared using several zinc counter ions such as chloride, nitrate and sulphate along with oxalic acid as a precipitating agent. The precursors were decomposed by heating in air resulting in the formation of different shapes of zinc oxide crystals. Variations in ZnO nanostructural shapes were possibly due to the counter ion effect. Sulphate counter ion led to unusual rose-shape morphology. Strong ultrasonic treatment on ZnO rose shows that it was formed by irregular arrangement of micro to nano size hexagonal zinc oxide platelets. The X-ray diffraction studies confirmed the wurzite structure of all zinc oxide samples synthesized using different zinc counter ions. Functional groups of the zinc oxalate precursor and zinc oxide were identified using micro Raman studies. The blue light emission spectra of the various morphologies were recorded using luminescence spectrometer. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanopowders of TiO(2) has been prepared using a microwave irradiation-assisted route, starting from a metalorganic precursor, bis(ethyl-3-oxo-butanoato)oxotitanium (IV), [TiO(etob)(2)](2). Polyvinylpyrrolidone (PVP) was used as a capping agent. The as-prepared amorphous powders crystallize into anatase phase, when calcined. At higher calcination temperature, the rutile phase is observed to form in increasing quantities as the calcination temperature is raised. The structural and physicochemical properties were measured using XRD, FT-IR, SEM, TEM and thermal analyses. The mechanisms of formation of nano-TiO(2) from the metal-organic precursor and the irreversible phase transformation of nano TiO(2) from anatase to rutile structure at higher temperatures have been discussed. It is suggested that a unique step of initiation of transformation takes place in Ti(1/2)O layers in anatase which propagates. This mechanism rationalizes several key observations associated with the anatase rutile transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deformation and recrystallization textures in nano-crystalline nickel with average grain size of 20 nm were investigated using X-ray diffraction, electron microscopy and differential scanning calorimetry. The deformation behaviour of nano-crystalline nickel is quite complicated due to intervention of other deformation mechanisms like grain boundary sliding and restoration mechanisms like grain growth and grain rotation to dislocation mediated slip. Recrystallization studies carried out on the deformed nano-crystalline nickel showed that the deformation texture was retained during low temperature annealing (300 degrees C), while at higher temperature (1000 degrees C), the texture got randomised. The exact mechanism of texture formation during deformation and recrystallization has been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reports on the alloys formed from immiscible atoms when they are contained in a nano-sized system have initiated several research activities in the recent years. Bridging of the miscibility gap at nanoscale is significant as it has the potential to produce novel alloy materials with useful technological applications. Although the literature contains noticeable number of reports on the formation of solid solution between bulk immiscible atoms, several issues related to phase stability and microstructure remain unaddressed. This article discusses some of these issues using examples from the work done by the author's research group on isolated nanoparticles of bulk immiscible binary systems such as Ag-Ni, Ag-Fe and Ag-Co.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effect of stress and interface defects on photo luminescence property of a silicon nano-crystal (Si-nc) embedded in amorphous silicon dioxide (a-SiO2) are studied in this paper using a self-consistent quantum-continuum based modeling framework. Si-ncs or quantum dots show photoluminescence at room temperature. Whether its origin is due to Si-nc/a-SiO2 interface defects or quantum confinement of carriers in Si-nc is still an outstanding question. Earlier reports have shown that stresses greater than 12 GPa change the indirect energy band gap structure of bulk Si to a direct energy band gap structure. Such stresses are observed very often in nanostructures and these stresses influence the carrier confinement energy significantly. Hence, it is important to determine the effect of stress in addition to the structure of interface defects on photoluminescence property of Si-nc. In the present work, first a Si-nc embedded in a-SiO2 is constructed using molecular dynamics simulation framework considering the actual conditions they are grown so that the interface and residual stress in the structure evolves naturally during formation. We observe that the structure thus created has an interface of about 1 nm thick consisting of 41.95% of defective states mostly Sin+ (n = 0 to 3) coordination states. Further, both the Si-nc core and the embedding matrix are observed to be under a compressive strain. This residual strain field is applied in an effective mass k.p Hamiltonian formulation to determine the energy states of the carriers. The photo luminescence property computed based on the carrier confinement energy and interface energy states associated with defects will be analysed in details in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-sized bimetallic dispersoids consisting of (Pb) and beta-(Sn) phases of eutectic composition (Pb26.1Sn73.9) embedded in aluminum and Al-Cu-Fe quasicrystalline matrices have been prepared by rapid solidification processing. The two phases, face centered cubic (Pb) and body center tetragonal, beta-(Sn) solid solution co-exist in all the embedded nanoparticles at room temperature. The phases bear crystallographic orientation relationship with the matrix. In situ TEM study has been carried out for the alloy particles to study the melting and the solidification behavior. The detailed microscopic observations indicate formation of a single-phase metastable fcc (Pb) in the nano-particles prior to the melting during heating. Solidification of these particles begins with nucleation of fcc (Pb), which phase separates into fcc (Pb) and beta-(Sn) lamellae in the solid state. In situ X-ray diffraction study is carried out to obtain lattice parameter of metastable fcc (Pb) and thereby an estimate of amount of Sn dissolved in the metastable (Pb) prior to the melting. The results are discussed in terms of a metastable phase diagram between fcc Pb and fcc Sn and invoking the size effect on the metastable phase diagram. The size factor is found to play a critical role in deciding the pathway of phase transformation as well as the extension of solid solubility of Sn in fcc (Pb) in the nano-particles.