950 resultados para N2O emissions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Denitrification is an important process of global nitrogen cycle as it removes reactive nitrogen from the biosphere, and acts as the primary source of nitrous oxide (N2O). This thesis seeks to gain better understanding of the biogeochemistry of denitrification by investigating the process from four different aspects: genetic basis, enzymatic kinetics, environmental interactions, and environmental consequences. Laboratory and field experiments were combined with modeling efforts to unravel the complexity of denitrification process under microbiological and environmental controls. Dynamics of denitrification products observed in laboratory experiments revealed an important role of constitutive denitrification enzymes, whose presence were further confirmed with quantitative analysis of functional genes encoding nitrite reductase and nitrous oxide reductase. A metabolic model of denitrification developed with explicit denitrification enzyme kinetics and representation of constitutive enzymes successfully reproduced the dynamics of N2O and N2 accumulation observed in the incubation experiments, revealing important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Field studies demonstrated complex interaction of belowground N2O production, consumption and transport, resulting in two pulse pattern in the surface flux. Coupled soil gas diffusion/denitrification model showed great potential in simulating the dynamics of N2O below ground, with explicit representation of the activity of constitutive denitrification enzymes. A complete survey of environmental variables showed distinct regulation regimes on the denitrification activity from constitutive enzymes and new synthesized enzymes. Uncertainties in N2O estimation with current biogeochemical models may be reduced as accurate simulation of the dynamics of N2O in soil and surface fluxes is possible with a coupled diffusion/denitrification model that includes explicit representation of denitrification enzyme kinetics. In conclusion, denitrification is a complex ecological function regulated at cellular level. To assess the environmental consequences of denitrification and develop useful tools to mitigate N2O emissions require a comprehensive understanding of the regulatory network of denitrification with respect to microbial physiology and environmental interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed insight into natural variations of the greenhouse gas nitrous oxide (N2O) in response to changes in the Earth's climate system is provided by new measurements along the ice core of the North Greenland Ice Core Project (NGRIP). The presented record reaches from the early Holocene back into the previous interglacial with a mean time resolution of about 75 years. Between 11 and 120 kyr BP, atmospheric N2O concentrations react substantially to the last glacial-interglacial transition (Termination 1) and millennial time scale climate variations of the last glacial period. For long-lasting Dansgaard/Oeschger (DO) events, the N2O increase precedes Greenland temperature change by several hundred years with an increase rate of about 0.8-1.3 ppbv/century, which accelerates to about 3.8-10.7 ppbv/century at the time of the rapid warming in Greenland. Within each bundle of DO events, the new record further reveals particularly low N2O concentrations at the approximate time of Heinrich events. This suggests that the response of marine and/or terrestrial N2O emissions on a global scale are different for stadials with and without Heinrich events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is a key atmospheric greenhouse gas that contributes to global climatic change through radiative warming and depletion of stratospheric ozone. In this report, N2O flux was monitored simultaneously with photosynthetic CO2 and O2 exchanges from intact canopies of 12 wheat seedlings. The rates of N2O-N emitted ranged from <2 pmol⋅m−2⋅s−1 when NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} was the N source, to 25.6 ± 1.7 pmol⋅m−2⋅s−1 (mean ± SE, n = 13) when the N source was shifted to NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}. Such fluxes are among the smallest reported for any trace gas emitted by a higher plant. Leaf N2O emissions were correlated with leaf nitrate assimilation activity, as measured by using the assimilation quotient, the ratio of CO2 assimilated to O2 evolved. 15N isotopic signatures on N2O emitted from leaves supported direct N2O production by plant NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} assimilation and not N2O produced by microorganisms on root surfaces and emitted in the transpiration stream. In vitro production of N2O by both intact chloroplasts and nitrite reductase, but not by nitrate reductase, indicated that N2O produced by leaves occurred during photoassimilation of NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} in the chloroplast. Given the large quantities of NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} assimilated by plants in the terrestrial biosphere, these observations suggest that formation of N2O during NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} photoassimilation could be an important global biogenic N2O source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vários países têm buscado investigar as emissões de gases do efeito estufa (GEE) e amônia (NH3) na atividade animal para melhor compreensão da dinâmica e excesso desses gases na atmosfera. As informações disponíveis na literatura sobre as emissões de GEE e NH3 em aviários são variáveis e incertas devido à diversidade e condições particulares das instalações, bem como das inúmeras diferenças no sistema de criação e das complexas interações observadas nos dejetos dos animais. A caracterização das emissões do setor avícola normalmente é realizada por monitoramento aéreo das concentrações dos gases dentro das instalações de produção. No entanto, alguns métodos adotados são insuficientes devido às interferências de outros gases, razão por que as medições podem não refletir, com exatidão, as emissões reais. Diante dessa complexidade, nesta pesquisa buscou-se aplicar técnicas que apresentam menores interferências, bem como desenvolver um sistema de amostragem para medir diretamente as emissões de N2O, CH4 e NH3 dos dejetos de frangos de corte. No desenvolvimento do método, utilizou-se como referência o princípio da câmara estática fechada e a análise por cromatografia gasosa (CG), para estimar as emissões de GEE. Para quantificação direta das emissões de NH3, adaptou-se um método semiaberto estático, baseado na captura, em meio ácido, do NH3 volatilizado dos dejetos das aves. Adicionalmente, buscou-se monitorar as emissões diárias de NH3, CH4 e N2O dos dejetos dos frangos, considerando o típico manejo de reutilização da cama de frango. Foram propostos modelos empíricos para as predições das emissões de N2O, CH4 e NH3, em função do número de reutilizações da cama, da idade das aves e de propriedades físico-químicas da cama de frango. As emissões acumuladas por quatro ciclos de criação permitiram calcular perdas anuais de 0,14, 0,35, e 72,0 g de N2O, CH4 e NH3 ave-alojada-1 ano-1, respectivamente. Considerando o número de frangos de corte alojados em 2015, a atividade avícola emitiu cerca de 545,1 Gg CO2eq pelo manejo dos dejetos nos aviários, correspondente a 0,04 kg CO2eq por kg de carne. Reduções de 21, 40 e 78% foram observadas nas emissões anuais de N2O, CH4 e NH3, respectivamente, ao utilizar (seis ciclos) a cama somente em um ciclo de criação. Contudo, um balanço de N foi conduzido para contabilizar as entradas e saídas de N na produção de frangos de corte durante os quatro ciclos de criação avaliados. A principal entrada de N no sistema foi pela ração, como entrada secundária, o N via cama de frango, o qual aumentou consideravelmente a cada ciclo de reutilização. Considerando que esta pesquisa apresenta uma metodologia aplicável e inovadora para determinar os fluxos de GEE em galpões abertos no país, os dados serão úteis para o inventário anual brasileiro das emissões de GEE oriundas dos dejetos da avicultura de corte. Os resultados são úteis também para incentivar novas pesquisas que possam avançar no conhecimento de impactos e alternativas de mitigação de GEE na produção de frangos de corte e, adicionalmente, conferir sustentabilidade à produção de carne no Brasil

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon and nitrogen loading to streams and rivers contributes to eutrophication as well as greenhouse gas (GHG) production in streams, rivers and estuaries. My dissertation consists of three research chapters, which examine interactions and potential trade-offs between water quality and greenhouse gas production in urban streams of the Chesapeake Bay watershed. My first research project focused on drivers of carbon export and quality in an urbanized river. I found that watershed carbon sources (soils and leaves) contributed more than in-stream production to overall carbon export, but that periods of high in-stream productivity were important over seasonal and daily timescales. My second research chapter examined the influence of urban storm-water and sanitary infrastructure on dissolved and gaseous carbon and nitrogen concentrations in headwater streams. Gases (CO2, CH4, and N2O) were consistently super-saturated throughout the course of a year. N2O concentrations in streams draining septic systems were within the high range of previously published values. Total dissolved nitrogen concentration was positively correlated with CO2 and N2O and negatively correlated with CH4. My third research chapter examined a long-term (15-year) record of GHG emissions from soils in rural forests, urban forest, and urban lawns in Baltimore, MD. CO2, CH4, and N2O emissions showed positive correlations with temperature at each site. Lawns were a net source of CH4 + N2O, whereas forests were net sinks. Gross CO2 fluxes were also highest in lawns, in part due to elevated growing-season temperatures. While land cover influences GHG emissions from soils, the overall role of land cover on this flux is very small (< 0.5%) compared with gases released from anthropogenic sources, according to a recent GHG budget of the Baltimore metropolitan area, where this study took place.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrogen fertilizer inputs dominate the fertilizer budget of grain sorghum growers in northern Australia, so optimizing use efficiency and minimizing losses are a primary agronomic objective. We report results from three experiments in southern Queensland sown on contrasting soil types and with contrasting rotation histories in the 2012-2013 summer season. Experiments were designed to quantify the response of grain sorghum to rates of N fertilizer applied as urea. Labelled 15N fertilizer was applied in microplots to determine the fate of applied N, while nitrous oxide (N2O) emissions were continuously monitored at Kingaroy (grass or legume ley histories) and Kingsthorpe (continuous grain cropping). Nitrous oxide is a useful indicator of gaseous N losses. Crops at all sites responded strongly to fertilizer N applications, with yields of unfertilized treatments ranging from 17% to 52% of N-unlimited potential. Maximum yields ranged from 4500 (Kupunn) to 5450 (Kingaroy) and 8010 (Kingsthorpe) kg/ha. Agronomic efficiency (kg additional grain produced/kg fertilizer N applied) at the optimum N rate on the Vertosol sites was 23 (80 N, Kupunn) to 25 (160N, Kingsthorpe), but 40-42 on the Ferrosols at Kingaroy (70-100N). Cumulative N2O emissions ranged from 0.44% (Kingaroy legume) to 0.93% (Kingsthorpe) and 1.15% (Kingaroy grass) of the optimum fertilizer N rate at each site, with greatest emissions from the Vertosol at Kingsthorpe. The similarity in N2O emissions factors between Kingaroy and Kingsthorpe contrasted markedly with the recovery of applied fertilizer N in plant and soil. Apparent losses of fertilizer N ranged from 0-5% (Ferrosols at Kingaroy) to 40-48% (Vertosols at Kupunn and Kingsthorpe). The greater losses on the Vertosols were attributed to denitrification losses and illustrate the greater risks of N losses in these soils in wet seasonal conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluates the effect of planting three cover crops (CCs) (barley, Hordeum vulgare L.; vetch, Vicia villosa L.; rape, Brassica napus L.) on the direct emission of N2O, CO2 and CH4 in the intercrop period and the impact of incorporating these CCs on the emission of greenhouse gas (GHG) from the forthcoming irrigated maize (Zea mays L.) crop. Vetch and barley were the CCs with the highest N2O and CO2 losses (75 and 47% increase compared with the control, respectively) in the fallow period. In all cases, fluxes of N2O were increased through N fertilization and the incorporation of barley and rape residues (40 and 17% increase, respectively). The combination of a high C:N ratio with the addition of an external source of mineral N increased the fluxes of N2O compared with − Ba and − Rp. The direct emissions of N2O were lower than expected for a fertilized crop (0.10% emission factor, EF) compared with other studies and the IPCC EF. These results are believed to be associated with a decreased NO3− pool due to highly denitrifying conditions and increased drainage. The fluxes of CO2 were in the range of other fertilized crops (i.e., 1118.71–1736.52 kg CO2–C ha− 1). The incorporation of CC residues enhanced soil respiration in the range of 21–28% for barley and rape although no significant differences between treatments were detected. Negative CH4 fluxes were measured and displayed an overall sink effect for all incorporated CC (mean values of − 0.12 and − 0.10 kg CH4–C ha− 1 for plots with and without incorporated CCs, respectively).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic residue application into soil alter the emission of gases to atmosphere and CO2, CH4, N2O may contribute to increase the greenhouse effect. This experiment was carried out in a restoration area on a dystrophic Ultisol (PVAd) to quantify greenhouse gas (GHG) emissions from soil under castor bean cultivation, treated with sewage sludge (SS) or mineral fertilizer. The following treatments were tested: control without N; FertMin = mineral fertilizer; SS5 = 5 t ha-1 SS (37.5 kg ha-1 N); SS10 = 10 t ha-1 SS (75 kg ha-1 N); and SS20 = 20 t ha-1 SS (150 kg ha-1 N). The amount of sludge was based on the recommended rate of N for castor bean (75 kg ha-1), the N level of SS and the mineralization fraction of N from SS. Soil gas emission was measured for 21 days. Sewage sludge and mineral fertilizers altered the CO2, CH4 and N2O fluxes. Soil moisture had no effect on GHG emissions and the gas fluxes was statistically equivalent after the application of FertMin and of 5 t ha-1 SS. The application of the entire crop N requirement in the form of SS practically doubled the Global Warming Potential (GWP) and the C equivalent emissions in comparison with FertMin treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grazing systems represent a substantial percentage of the global anthropogenic flux of nitrous oxide (N2O) as a result of nitrogen addition to the soil. The pool of available carbon that is added to the soil from livestock excreta also provides substrate for the production of carbon dioxide (CO2) and methane (CH4) by soil microorganisms. A study into the production and emission of CO2, CH4 and N2O from cattle urine amended pasture was carried out on the Somerset Levels and Moors, UK over a three-month period. Urine-amended plots (50 g N m−2) were compared to control plots to which only water (12 mg N m−2) was applied. CO2 emission peaked at 5200 mg CO2 m−2 d−1 directly after application. CH4 flux decreased to −2000 μg CH4 m−2 d−1 two days after application; however, net CH4 flux was positive from urine treated plots and negative from control plots. N2O emission peaked at 88 mg N2O m−2 d−1 12 days after application. Subsurface CH4 and N2O concentrations were higher in the urine treated plots than the controls. There was no effect of treatment on subsurface CO2 concentrations. Subsurface N2O peaked at 500 ppm 12 days after and 1200 ppm 56 days after application. Subsurface NO3− concentration peaked at approximately 300 mg N kg dry soil−1 12 days after application. Results indicate that denitrification is the key driver for N2O release in peatlands and that this production is strongly related to rainfall events and water-table movement. N2O production at depth continued long after emissions were detected at the surface. Further understanding of the interaction between subsurface gas concentrations, surface emissions and soil hydrological conditions is required to successfully predict greenhouse gas production and emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in understanding have made it possible to relate global precipitation changes directly to emissions of particular gases and aerosols that influence climate. Using these advances, new indices are developed here called the Global Precipitation-change Potential for pulse (GPP_P) and sustained (GPP_S) emissions, which measure the precipitation change per unit mass of emissions. The GPP can be used as a metric to compare the effects of different emissions. This is akin to the global warming potential (GWP) and the global temperature-change potential (GTP) which are used to place emissions on a common scale. Hence the GPP provides an additional perspective of the relative or absolute effects of emissions. It is however recognised that precipitation changes are predicted to be highly variable in size and sign between different regions and this limits the usefulness of a purely global metric. The GPP_P and GPP_S formulation consists of two terms, one dependent on the surface temperature change and the other dependent on the atmospheric component of the radiative forcing. For some forcing agents, and notably for CO2, these two terms oppose each other – as the forcing and temperature perturbations have different timescales, even the sign of the absolute GPP_P and GPP_S varies with time, and the opposing terms can make values sensitive to uncertainties in input parameters. This makes the choice of CO2 as a reference gas problematic, especially for the GPP_S at time horizons less than about 60 years. In addition, few studies have presented results for the surface/atmosphere partitioning of different forcings, leading to more uncertainty in quantifying the GPP than the GWP or GTP. Values of the GPP_P and GPP_S for five long- and short-lived forcing agents (CO2, CH4, N2O, sulphate and black carbon – BC) are presented, using illustrative values of required parameters. The resulting precipitation changes are given as the change at a specific time horizon (and hence they are end-point metrics) but it is noted that the GPPS can also be interpreted as the time-integrated effect of a pulse emission. Using CO2 as a references gas, the GPP_P and GPP_S for the non-CO2 species are larger than the corresponding GTP values. For BC emissions, the atmospheric forcing is sufficiently strong that the GPP_S is opposite in sign to the GTP_S. The sensitivity of these values to a number of input parameters is explored. The GPP can also be used to evaluate the contribution of different emissions to precipitation change during or after a period of emissions. As an illustration, the precipitation changes resulting from emissions in 2008 (using the GPP_P) and emissions sustained at 2008 levels (using the GPP_S) are presented. These indicate that for periods of 20 years (after the 2008 emissions) and 50 years (for sustained emissions at 2008 levels) methane is the dominant driver of positive precipitation changes due to those emissions. For sustained emissions, the sum of the effect of the five species included here does not become positive until after 50 years, by which time the global surface temperature increase exceeds 1 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sample of 21 light duty vehicles powered by Otto cycle engines were tested on a chassis dynamometer to measure the exhaust emissions of nitrous oxide (N2O). The tests were performed at the Vehicle Emission Laboratory of CETESB (Environmental Company of the State of Sao Paulo) using the US-FTP-75 (Federal Test Procedure) driving cycle. The sample tested included passenger cars running on three types of fuels used in Brazil: gasohol, ethanol and CNG. The measurement of N2O was made using two methods: Non Dispersive InfraRed (NDIR) analyzer and Fourier Transform InfraRed spectroscopy (FTIR). Measurements of regulated pollutants were also made in order to establish correlations between N2O and NOx. The average N2O emission factors obtained by the NDIR method was 78 +/- 41 mg.km(-1) for vehicles running with gasohol, 73 +/- 45 mg.km(-1) for ethanol vehicles and 171 +/- 69 mg.km(-1) for CNG vehicles. Seventeen results using the FTIR method were also obtained. For gasohol vehicles the results showed a good agreement between the two methods, with an average emission factor of 68 +/- 41 mg.km(-1). The FTIR measurement results of N2O for ethanol and CNG vehicles were much lower than those obtained by the NDIR method. The emission factors were 17 +/- 10 mg.km(-1) and 33 +/- 17 mg.km(-1), respectively, possibly because of the interference of water vapor (present at a higher concentration in the exhaust gases of these vehicles) on measurements by the NDIR method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Understanding and quantifying ocean-atmosphere exchanges of the long-lived greenhouse gases carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are important for understanding the global biogeochemical cycles of carbon and nitrogen in the context of ongoing global climate change. In this chapter we summarise our current state of knowledge regarding the oceanic distributions, formation and consumption pathways, and oceanic uptake and emissions of CO2, N2O and CH4, with a particular emphasis on the upper ocean. We specifically consider the role of the ocean in regulating the tropospheric content of these important radiative gases in a world in which their tropospheric content is rapidly increasing and estimate the impact of global change on their present and future oceanic uptake and/or emission. Finally, we evaluate the various uncertainties associated with the most commonly used methods for estimating uptake and emission and identify future research needs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agriculture significantly contributes to global greenhouse gas (GHG) missions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3?) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3? addition were the main factors affecting N2O fluxes, whilst glucose, NO3? and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with Little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time.