997 resultados para Myosin Heavy Chains


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Myosin isolated from the pollen tubes of lily (Lilium longiflorum) is composed of a 170-kD heavy chain (E. Yokota and T. Shimmen [1994] Protoplasma 177: 153–162). Both the motile activity in vitro and the F-actin-stimulated ATPase activity of this myosin were inhibited by Ca2+ at concentrations higher than 10−6 m. In the Ca2+ range between 10−6 and 10−5 m, inhibition of the motile activity was reversible. In contrast, inhibition by more than 10−5 m Ca2+ was not reversible upon Ca2+ removal. An 18-kD polypeptide that showed the same mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as that of spinach calmodulin (CaM) was present in this myosin fraction. This polypeptide showed a mobility shift in sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a Ca2+-dependent manner. Furthermore, this polypeptide was recognized by antiserum against spinach CaM. By immunoprecipitation using antiserum against the 170-kD heavy chain, the 18-kD polypeptide was coprecipitated with the 170-kD heavy chain, provided that the Ca2+ concentration was low, indicating that this 18-kD polypeptide is bound to the 170-kD myosin heavy chain. However, the 18-kD polypeptide was dissociated from the 170-kD heavy chain at high Ca2+ concentrations, which irreversibly inhibited the motile activity of this myosin. From these results, it is suggested that the 18-kD polypeptide, which is likely to be CaM, is associated with the 170-kD heavy chain as a light chain. It is also suggested that this polypeptide is involved in the regulation of this myosin by Ca2+. This is the first biochemical basis, to our knowledge, for Ca2+ regulation of cytoplasmic streaming in higher plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We characterized the novel Schizosaccharomyces pombe genes myo4+ and myo5+, both of which encode myosin-V heavy chains. Disruption of myo4 caused a defect in cell growth and led to an abnormal accumulation of secretory vesicles throughout the cytoplasm. The mutant cells were rounder than normal, although the sites for cell polarization were still established. Elongation of the cell ends and completion of septation required more time than in wild-type cells, indicating that Myo4 functions in polarized growth both at the cell ends and during septation. Consistent with this conclusion, Myo4 was localized around the growing cell ends, the medial F-actin ring, and the septum as a cluster of dot structures. In living cells, the dots of green fluorescent protein-tagged Myo4 moved rapidly around these regions. The localization and movement of Myo4 were dependent on both F-actin cables and its motor activity but seemed to be independent of microtubules. Moreover, the motor activity of Myo4 was essential for its function. These results suggest that Myo4 is involved in polarized cell growth by moving with a secretory vesicle along the F-actin cables around the sites for polarization. In contrast, the phenotype of myo5 null cells was indistinguishable from that of wild-type cells. This and other data suggest that Myo5 has a role distinct from that of Myo4.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have created a strain of Dictyostelium that is deficient for the Ca2+/calmodulin-independent MLCK-A. This strain undergoes cytokinesis less efficiently than wild type, which results in an increased frequency of multinucleate cells when grown in suspension. The MLCK-A-cells are able, however, to undergo development and to cap crosslinked surface receptors, processes that require myosin heavy chain. Phosphorylated regulatory light chain (RLC) is still present in MLCK-A-cells, indicating that Dictyostelium has one or more additional protein kinases capable of phosphorylating RLC. Concanavalin A treatment was found to induce phosphorylation of essentially all of the RLC in wild-type cells, but RLC phosphorylation levels in MLCK-A-cells are unaffected by concanavalin A. Thus MLCK-A is regulated separately from the other MLCK(s) in the cell.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since it has not been possible to crystallize the actomyosin complex, the x-ray structures of the individual proteins together with data obtained by fiber diffraction and electron microscopy have been used to build detailed models of filamentous actin (f-actin) and the actomyosin rigor complex. In the f-actin model, a single monomer uses 10 surface loops and two alpha-helices to make sometimes complicated interactions with its four neighbors. In the myosin molecule, both the essential and regulatory light chains show considerable structural homology to calmodulin. General principles are evident in their mode of attachment to the target alpha-helix of the myosin heavy chain. The essential light chain also makes contacts with other parts of the heavy chain and with the regulatory light chain. The actomyosin rigor interface is extensive, involving interaction of a single myosin head with regions on two adjacent actin monomers. A number of hydrophobic residues on the apposing faces of actin and myosin contribute to the main binding site. This site is flanked on three sides by charged myosin surface loops that form predominantly ionic interactions with adjacent regions of actin. Hydrogen bonding is likely to play a significant role in actin-actin and actin-myosin interactions since many of the contacts involve loops. The model building approach used with actomyosin is applicable to other multicomponent assemblies of biological interest and is a powerful method for revealing molecular interactions and providing insights into the mode of action of the assemblies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conventional myosin plays a key role in the cytoskeletal reorganization necessary for cytokinesis, migration, and morphological changes associated with development in nonmuscle cells. We have made a fusion between the green fluorescent protein (GFP) and the Dictyostelium discoideum myosin heavy chain (GFP-myosin). The unique Dictyostelium system allows us to test the GFP-tagged myosin for activity both in vivo and in vitro. Expression of GFP-myosin rescues all myosin null cell defects. Additionally, GFP-myosin purified from these cells exhibits the same ATPase activities and in vitro motility as wild-type myosin. GFP-myosin is concentrated in the cleavage furrow during cytokinesis and in the posterior cortex of migrating cells. Surprisingly, GFP-myosin concentration increases transiently in the tips of retracting pseudopods. Contrary to previous thinking, this suggests that conventional myosin may play an important role in the dynamics of pseudopods as well as filopodia, lamellipodia, and other cellular protrusions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 10-30% of hypertrophic cardiomyopathy kindreds, the disease is caused by > 29 missense mutations in the cardiac beta-myosin heavy chain (MYH7) gene. The amino acid sequence similarity between chicken skeletal muscle and human beta-cardiac myosin and the three-dimensional structure of the chicken skeletal muscle myosin head have provided the opportunity to examine the structural consequences of these naturally occurring mutations in human beta-cardiac myosin. This study demonstrates that the mutations are related to distinct structural and functional domains. Twenty-four are clustered around four specific locations in the myosin head that are (i) associated with the actin binding interface, (ii) around the nucleotide binding site, (iii) adjacent to the region that connects the two reactive cysteine residues, and (iv) in close proximity to the interface of the heavy chain with the essential light chain. The remaining five mutations are in the myosin rod. The locations of these mutations provide insight into the way they impair the functioning of this molecular motor and also into the mechanism of energy transduction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heart tissue destruction in chronic Chagas disease cardiopathy (CCC) may be caused by autoimmune recognition of heart tissue by a mononuclear cell infiltrate decades after Trypanosoma cruzi infection. Indirect evidence suggests that there is antigenic crossreactivity between T. cruzi and heart tissue. As there is evidence for immune recognition of cardiac myosin in CCC, we searched for a putative myosin-crossreactive T. cruzi antigen. T. cruzi lysate immunoblots were probed with anti-cardiac myosin heavy chain IgG antibodies (AMA) affinity-purified from CCC or asymptomatic Chagas disease patient-seropositive sera. A 140/116-kDa doublet was predominantly recognized by AMA from CCC sera. Further, recombinant T. cruzi protein B13--whose native protein is also a 140- and 116-kDa double band--was identified by crossreactive AMA. Among 28 sera tested in a dot-blot assay, AMA from 100% of CCC sera but only 14% of the asymptomatic Chagas disease sera recognized B13 protein (P = 2.3 x 10(-6)). Sequence homology to B13 protein was found at positions 8-13 and 1442-1447 of human cardiac myosin heavy chain. Competitive ELISA assays that used the correspondent myosin synthetic peptides to inhibit serum antibody binding to B13 protein identified the heart-specific AAALDK (1442-1447) sequence of human cardiac myosin heavy chain and the homologous AAAGDK B13 sequence as the respective crossreactive epitopes. The recognition of a heart-specific T. cruzi crossreactive epitope, in strong association with the presence of chronic heart lesions, suggests the involvement of crossreactivity between cardiac myosin and B13 in the pathogenesis of CCC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: We analyzed patients with hairy cell leukemia (HCL) to achieve a better understanding of the differentiation stage reached by HCL cells and to define the key role of the diversification of cell surface makers, especially CD25 expression. PATIENTS AND METHODS: We analyzed 38 previously untreated patients with HCL to characterize their complete (VDJ(H)) and incomplete (DJ(H)) immunoglobulin (Ig) heavy chain (IgH) rearrangements, including somatic hypermutation pattern and gene segment use. RESULTS: A correlation between immunophenotypic profile and molecular data was seen. All 38 cases showed monoclonal amplifications: VDJ(H) in 97%, DJ(H) in 42%, and both in 39%. Segments from the D(H)3 family were used more in complete compared with incomplete rearrangements (45% vs. 12%; P <.005). Furthermore, comparison between molecular and immunophenotypic characteristics disclosed differences in the expression of CD25 antigen; CD25(-) cases, a phenotype associated with HCL variant, showed complete homology to the germline in 3 of 5 cases (60%), whereas this characteristic was never observed in CD25(+) cases (P <.005). Moreover, V(H)4-34, V(H)1-08, and J(H)3 segments appeared in 2, 1, and 2 CD25(-) cases, respectively, whereas they were absent in all CD25(+) cases. CONCLUSION: These results support that HCL is a heterogeneous entity including subgroups with different molecular characteristics, which reinforces the need for additional studies with a larger number of patients to clarify the real role of gene rearrangements in HCL.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we used IGH sequence analysis to assess the maturational status of Waldenstrom's (WM) macroglobulinemia and its putative precursor immunoglobulin (Ig)-M monoclonal gammopathy of undetermined significance (MGUS). IGH sequence analysis was performed using standard methods in 23 cases (20 WM and 3 IgM MGUS as defined by consensus panel criteria). Waldenstrom's macroglobulinemia cases were characterized by heavily mutated IGH genes (median, 6.3%; range, 3.8%-13.9%) but without intraclonal variation (ICV). IgM MGUS was similarly characterized by somatic hypermutation (median, 7.5%; range, 7%-7.7%), but ICV was evident in 1 of the 3 cases. We would therefore conclude that WM is characterized by somatic hypermutation without ICV, which supports a derivation from postgerminal center/memory B cells. IgM MGUS is also characterized by somatic hypermutation but, in a manner similar to IgA/IgG MGUS, can be associated with ICV, although the significance of this remains unclear.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: IgE is the pivotal-specific effector molecule of allergic reactions yet it remains unclear whether the elevated production of IgE in atopic individuals is due to superantigen activation of B cell populations, increased antibody class switching to IgE or oligoclonal allergen-driven IgE responses. Objectives: To increase our understanding of the mechanisms driving IgE responses in allergic disease we examined immunoglobulin variable regions of IgE heavy chain transcripts from three patients with seasonal rhinitis due to grass pollen allergy. Methods: Variable domain of heavy chain-epsilon constant domain 1 cDNAs were amplified from peripheral blood using a two-step semi-nested PCR, cloned and sequenced. Results: The VH gene family usage in subject A was broadly based, but there were two clusters of sequences using genes VH 3-9 and 3-11 with unusually low levels of somatic mutations, 0-3%. Subject B repeatedly used VH 1-69 and subject C repeatedly used VH 1-02, 1-46 and 5a genes. Most clones were highly mutated being only 86-95% homologous to their germline VH gene counterparts and somatic mutations were more abundant at the complementarity determining rather than framework regions. Multiple sequence alignment revealed both repeated use of particular VH genes as well as clonal relatedness among clusters of IgE transcripts. Conclusion: In contrast to previous studies we observed no preferred VH gene common to IgE transcripts of the three subjects allergic to grass pollen. Moreover, most of the VH gene characteristics of the IgE transcripts were consistent with oligoclonal antigen-driven IgE responses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is the third most common cancer in Finland. Of all CRC tumors, 15% display microsatellite-instability (MSI) caused by defective cellular mismatch repair. Cells displaying MSI accumulate a high number of mutations genome-wide, especially in short repeat areas, microsatellites. When targeting genes essential for cell growth or death, MSI can promote tumorigenesis. In non-coding areas, microsatellite mutations are generally considered as passenger events. Since the discovery of MSI and its linkage to cancer, more that 200 genes have been investigated for a role in MSI tumorigenesis. Although various criteria have been suggested for MSI target gene identification, the challenge has been to distinguish driver mutations from passenger mutations. This study aimed to clarify these key issues in the research field of MSI cancer. Prior to this, background mutation rate in MSI cancer has not been studied in a large-scale. We investigated the background mutation rate in MSI CRC by analyzing the spectrum of microsatellite mutations in non-coding areas. First, semenogelin I was studied for a possible role in MSI carcinogenesis. The intronic T9 repeat of semenogelin I was frequently mutated but no evidence for selection during tumorigenesis was obtained. Second, a sequencing approach was utilized to evaluate the general background mutation rate in MSI CRC. Both intronic and intergenic repeats harbored extremely high mutation rates of ≤ 87% and intergenic repeats were more unstable than the intronic repeats. As mutation rates of presumably neutral microsatellites can be high in MSI CRC in the absence of apparent selection pressure, high mutation frequency alone is not sufficient evidence for identification of driver MSI target genes. Next, an unbiased approach was designed to identify the mutatome of MSI CRC. By combining expression array data and a database search we identified novel genes possibly related to MSI CRC carcinogenesis. One of the genes was studied further. In the functional analysis this gene was observed to cause an abnormal cancer-prone cellular phenotype, possibly through altered responses to DNA damage. In our recent study, smooth muscle myosin heavy chain 11 (MYH11) was identified as a novel MSI CRC gene. Additionally, MYH11 has a well established role in acute myeloid leukemia (AML) through an oncogenic fusion protein CBFB-MYH11. We investigated further the role of MYH11 in AML by sequencing. Three novel missense variants of MYH11 were identified. None of the variants were present in the population-based control material. One of the identified variants, V71A, lies in the N-terminal SH3-like domain of MYH11 of unknown function. The other two variants, K1059E and R1792Q are located in the coil-coiled myosin rod essential for the regulation and filament formation of MYH11. The variant K1059E lies in the close proximity of the K1044N that has been functionally assessed in our earlier work of CRC and has been reported to cause total loss of MYH11 protein regulation. As the functional significance of the three novel variants examined in this work remains unknown, future studies should clarify the further role of MYH11 in AML leukaemogenesis and in other malignancies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Myopathies are among the major causes of mortality in the world. There is no complete cure for this heterogeneous group of diseases, but a sensitive, specific, and fast diagnostic tool may improve therapy effectiveness. In this study, Raman spectroscopy is applied to discriminate between muscle mutants in Drosophila on the basis of associated changes at the molecular level. Raman spectra were collected from indirect flight muscles of mutants, upheld1 (up1), heldup(2) (hdp(2)), myosin heavy chain7 (Mhc7), actin88F(KM88) (Act88F(KM88)), upheld101 (up101), and Canton-S (CS) control group, for both 2 and 12 days old flies. Difference spectra (mutant minus control) of all the mutants showed an increase in nucleic acid and beta-sheet and/or random coil protein content along with a decrease in a-helix protein. Interestingly, the 12th day samples of up1 and Act88F(KM88) showed significantly higher levels of glycogen and carotenoids than CS. A principal components based linear discriminant analysis classification model was developed based on multidimensional Raman spectra, which classified the mutants according to their pathophysiology and yielded an overall accuracy of 97% and 93% for 2 and 12 days old flies, respectively. The up1 and Act88F(KM88) (nemaline-myopathy) mutants form a group that is clearly separated in a linear discriminant plane from up101 and hdp2 (cardiomyopathy) mutants. Notably, Raman spectra from a human sample with nemaline-myopathy formed a cluster with the corresponding Drosophila mutant (up1). In conclusion, this is the first demonstration in which myopathies, despite their heterogeneity, were screened on the basis of biochemical differences using Raman spectroscopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 66 kilo-Dalton (k-Da) protein split off from the cross linked myosin heavy chain (CMHC) formed due to the setting of Alaska pollack surimi, frozen-storage of Pacific cod flesh, and vinegar-curing of Pacific mackerel mince was identified as a light meromyosin (LMM). Puncture and stress-relaxation tests showed that the actomyosin subunits (AMS) of Alaska pollack surimi, upon setting at 30°C, transformed into gel, although the elasticity of this gel was very low when compared to the gels from surimi or actomyosin (AM). Electrophoretic studies showed that the band due to LMM in the gel from AMS gradually disappeared with the progress of setting but higher molecular weight polymer did not form. The intensity of the bands due to other myosin sub-fragments decreased a little. The findings suggest that at setting temperature, LMM of MHC molecule leads to an unfolding resulting in an intramolecular aggregation through non-covalent interactions, and thus plays a significant role in the crosslinking of MHC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the low temperature setting of fish paste, myosin heavy chain (MHC) is polymerized to cross-linked myosin heavy chain (CMHC), which is considered to occur by the action of endogenous transglutaminase (TGase). In this study the contribution of TGase on the setting of Alaska pollack surimi at different temperatures was studied. Alaska pollack surimi was ground with 3% NaCl, 30% h2o and with or without ethylene glycol bis (β-aminoethylether) N, N, N¹,N¹- tetra acetic acid (EGTA), an inhibitor of TGase. Among the pastes without EGTA, highest TGase activity was observed at 25°C but breaking force of the gel set at 25°C was lower than that set at 30°, 35°, and 40°C. Addition of EGTA (5m mol/kg) to the paste suppressed TGase activity at all setting temperatures from 20° to 40°C. Gelation of the pastes and cross-linking of MHC on addition of EGTA were suppressed completely at 20° and 25°C, partially at 30° and 35°C, and not at all at 40°C. The findings suggested that during the setting of Alaska pollack surimi TGase mediated cross-linking of MHC was strong at around 25°C but the thermal aggregation of MHC by non-covalent bonds was strong at above 35°C. Setting of surimi at 40°C and cross-linking of its MHC did not involve TGase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Attempts have been made to characterize and purify immunoglobulins from the serum of Clarias gariepinus, which has been immunized with bovine serum albumen. Initially, the proteins in the serum were chromatographed successively by affinity chromatography column. The affinity-purified fraction was concentrated and checked in SDS-PAGE, two bands of heavy chain and two bands of light chain were observed. Since teleost immunoglobulins have been shown to belong to a single class, the extra bands in light and heavy chains in the present study might be the breakdown of immunoglobulin or some unpurified contaminants. The affinity-purified fraction was also subjected to gel filtration chromatography column.