957 resultados para Mutants HOXB4
Resumo:
The effect of C-12(6+) heavy ions bombardment on mutagenesis in Salvia splendens Ker-Gawl. was studied. Dose-response studies indicated that there was a peak of malformation frequency of S. splendens at 200 Gy. Abnormal leaf mutants of the bileaf, trileaf and tetraleaf conglutination were selected. Meanwhile, a bicolor flower chimera with dark red and fresh red flower was isolated in M1 generation of S. splendens. Random amplified polymorphic DNA (RAPD) analysis demonstrated that DNA variations existed among the wild-type, fresh and dark red flower shoots of the chimera. The dark red flower shoots of the chimera were conserved and cultivated at a large-scale through micropropagation. MS supplemented with 2.0 mg/L BA and 0.3 mg/L NAA was the optimal medium in which the maximum proliferation ratio (5.2-fold) and rooting rate (88%) were achieved after 6 weeks. Our findings provide an important method to improve the ornamental quality of S. splendens.
Resumo:
A novel method has been developed to easily isolate the mutants with high lipid yield after irradiating oleaginous yeast cells with carbon ions of energy of 80 MeV/u. Pre-selection of the mutants after ion irradiation was performed with culture medium in which the concentration of cerulenin, a potent inhibitor of fatty acid synthetase, was at 8.96 mu mol/l. Afterwards, lipid concentration in the fermentation broth of the pre-selected colonies was estimated by the sulfo-phospho-vanillin reaction instead of the conventional methanol-chloroform extraction. Two mutants with high lipid yield have been successfully selected out by the combined method. This easy and simple method is much less time-consuming but very efficient in the mutant isolation, and it has demonstrated great potential on mutation breeding in oleaginous microorganism.
Resumo:
The spectroscopic characteristics of cytochrome c(WT) and its mutants(Y67F and N521) in the low frequency region were studied by Resonance Raman technique. The results show that the replacement of phenylalanine for Tyr 67 in WT had a very slight effect on the hydrogen-bonding and conformation of the amino acid residues around propionic acid side chains of heme group. However, large effects on the hydrogen-bonding of internal water with its surrounding amino acid residues and hydrophobility of the home cavity were observed as Asn 52 was substituted with isoleucine, which resulted in conformational regulations of home group and surrounding amino acid residues.
Resumo:
EI Mikhailova, SP Sosnikhina, GA Kirillova, OA Tikholiz, VG Smirnov, RN Jones and G Jenkins (2001). Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L.). Journal of Cell Science, 114 (10), 1875-1882. Sponsorship: Russian Foundation for Basic Research (grants 00-04-48522/ 99-04-48182) RAE2008
Resumo:
The isoleucine and valine biosynthetic enzyme acetolactate synthase (Ilv2p) is an attractive antifungal drug target, since the isoleucine and valine biosynthetic pathway is not present in mammals, Saccharomyces cerevisiae ilv2Delta mutants do not survive in vivo, Cryptococcus neoformans ilv2 mutants are avirulent, and both S. cerevisiae and Cr. neoformans ilv2 mutants die upon isoleucine and valine starvation. To further explore the potential of Ilv2p as an antifungal drug target, we disrupted Candida albicans ILV2, and demonstrated that Ca. albicans ilv2Delta mutants were significantly attenuated in virulence, and were also profoundly starvation-cidal, with a greater than 100-fold reduction in viability after only 4 h of isoleucine and valine starvation. As fungicidal starvation would be advantageous for drug design, we explored the basis of the starvation-cidal phenotype in both S. cerevisiae and Ca. albicans ilv2Delta mutants. Since the mutation of ILV1, required for the first step of isoleucine biosynthesis, did not suppress the ilv2Delta starvation-cidal defects in either species, the cidal phenotype was not due to alpha-ketobutyrate accumulation. We found that starvation for isoleucine alone was more deleterious in Ca. albicans than in S. cerevisiae, and starvation for valine was more deleterious than for isoleucine in both species. Interestingly, while the target of rapamycin (TOR) pathway inhibitor rapamycin further reduced S. cerevisiae ilv2Delta starvation viability, it increased Ca. albicans ilv1Delta and ilv2Delta viability. Furthermore, the recovery from starvation was dependent on the carbon source present during recovery for S. cerevisiae ilv2Delta mutants, reminiscent of isoleucine and valine starvation inducing a viable but non-culturable-like state in this species, while Ca. albicans ilv1Delta and ilv2 Delta viability was influenced by the carbon source present during starvation, supporting a role for glucose wasting in the Ca. albicans cidal phenotype.
Resumo:
We present a novel strategy that uses high-throughput methods of isolating and mapping C. elegans mutants susceptible to pathogen infection. We show that C. elegans mutants that exhibit an enhanced pathogen accumulation (epa) phenotype can be rapidly identified and isolated using a sorting system that allows automation of the analysis, sorting, and dispensing of C. elegans by measuring fluorescent bacteria inside the animals. Furthermore, we validate the use of Amplifluor as a new single nucleotide polymorphism (SNP) mapping technique in C. elegans. We show that a set of 9 SNPs allows the linkage of C. elegans mutants to a 5-8 megabase sub-chromosomal region.
Resumo:
Reproduction extracts a cost in resources that organisms are then unable to utilize to deal with a multitude of environmental stressors. In the nematode C. elegans, development of the germline shortens the lifespan of the animal and increases its susceptibility to microbial pathogens. Prior studies have demonstrated germline-deficient nematodes to have increased resistance to gram negative bacteria. We show that germline-deficient strains display increased resistance across a broad range of pathogens including gram positive and gram negative bacteria, and the fungal pathogen Cryptococcus neoformans. Furthermore, we show that the FOXO transcription factor DAF-16, which regulates longevity and immunity in C. elegans, appears to be crucial for maintaining longevity in both wild-type and germline-deficient backgrounds. Our studies indicate that germline-deficient mutants glp-1 and glp-4 respond to pathogen infection using common and different mechanisms that involve the activation of DAF-16.
Resumo:
The actin cytoskeleton is a dynamic and complex structure in fission yeast that plays a major function in many cell processes including cellular growth, septa formation, endocytosis and cellular division. Computational studies have shown that Arp2p, which forms part of the Arp2/3 complex, is a potential substrate of NatB acetyltransferase which has specificity for proteins possessing an N-terminal Met-Asp or Met-Glu sequence motif. In arm1- mutants the loss of function of Arm1p, an auxillary subunit required for NatB activity, results in a temperature sensitive phenotype characterized by multiple septa, failure of endocytosis, and the inability to form actin cables. A temperature sensitive mutant of Schizosaccharomyces pombe arp2 gene exhibits a similar phenotype as seen by the formation of improper septa, slow growth, and the delocalization of actin patches. Four expression vectors encoding the open reading frames of arp2 and cdc8 (tropomyosin) were constructed with a modification changing the second residue to a Histidine, believed to mimic the charge distribution of natural acetylation by NatB. Constructs tested in normal yeast strains remained viable and grew normally in the presence of Met-His Arp2p and tropomyosin. Analysis of their ability to suppress the mutant phenotypes of arp2-1 and arm1- mutants is an area of research to be explored in future studies.
Resumo:
Thrombin-activatable fibrinolysis inhibitor (TAFI) is a human plasma zymogen that acts as a molecular link between the coagulation and fibrinolytic cascades. TAFI can be activated by thrombin and plasmin but the reaction is enhanced significantly when thrombin is in a complex with the endothelial cofactor thrombomodulin (TM). The in vitro properties of TAFI have been extensively characterized. Activated TAFI (TAFIa) is a thermally unstable enzyme that attenuates fibrinolysis by catalyzing the removal of basic residues from partially degraded fibrin. The in vivo role of the TAFI pathway, however, is poorly defined and very little is known about the role of different activators in regulating the TAFI pathway. In the present study, we have constructed and characterized various TAFI mutants that are resistant to activation by specific activators. Based on peptide sequence studies, these mutants were constructed by altering key amino acid residues surrounding the scissile R92-A93 bond. We measured the thermal stabilities of all our mutants and found them to be similar to wild type TAFI. We have identified that the TAFI mutants P91S, R92K, and S90P are impaired in activation by thrombin or thrombin-TM, thrombin alone, and thrombin alone or plasmin, respectively. The TAFI mutants A93V and S94V were predicted to be resistant to activation by plasmin but this was not observed. The triple mutant, DVV was not activated by any of the aforementioned activators. Finally, we have used in vitro fibrin clot lysis assays to evaluate the antifibrinolytic potential of our variants and were able to correlate their effectiveness with their respective activation kinetics. In summary, we have developed activation resistant TAFI variants that can potentially be used to explore the role of the TAFI pathway in vivo.
Resumo:
We have previously shown that the TolA protein is required for the correct surface expression of the Escherichia coli O7 antigen lipopolysaccharide (LPS). In this work, delta tolA and delta pal mutants of E. coli K-12 W3110 were transformed with pMF19 (encoding a rhamnosyltransferase that reconstitutes the expression of O16-specific LPS), pWQ5 (encoding the Klebsiella pneumoniae O1 LPS gene cluster), or pWQ802 (encoding the genes necessary for the synthesis of Salmonella enterica O:54). Both DeltatolA and delta pal mutants exhibited reduced surface expression of O16 LPS as compared to parental W3110, but no significant differences were observed in the expression of K. pneumoniae O1 LPS and S. enterica O:54 LPS. Therefore, TolA and Pal are required for the correct surface expression of O antigens that are assembled in a wzy (polymerase)-dependent manner (like those of E. coli O7 and O16) but not for O antigens assembled by wzy-independent pathways (like K. pneumoniae O1 and S. enterica O:54). Furthermore, we show that the reduced surface expression of O16 LPS in delta tolA and delta pal mutants was associated with a partial defect in O-antigen polymerization and it was corrected by complementation with intact tolA and pal genes, respectively. Using derivatives of W3110 delta tolA and W3110 delta pal containing lacZ reporter fusions to fkpA and degP, we also demonstrate that the RpoE-mediated extracytoplasmic stress response is upregulated in these mutants. Moreover, an altered O16 polymerization was also detected under conditions that stimulate RpoE-mediated extracytoplasmic stress responses in tol+ and pal+ genetic backgrounds. A Wzy derivative with an epitope tag at the C-terminal end of the protein was stable in all the mutants, ruling out stress-mediated proteolysis of Wzy. We conclude that the absence of TolA and Pal elicits a sustained extracytoplasmic stress response that in turn reduces O-antigen polymerization but does not affect the stability of the Wzy O-antigen polymerase.
Resumo:
A genetic screen was performed to isolate mutants showing increased arsenic tolerance using an Arabidopsis thaliana population of activation tagged lines. The most arsenic-resistant mutant shows increased arsenate and arsenite tolerance. Genetic analyses of the mutant indicate that the mutant contains two loci that contribute to arsenic tolerance, designated ars4 and ars5. The ars4ars5 double mutant contains a single T-DNA insertion, ars4, which co-segregates with arsenic tolerance and is inserted in the Phytochrome A (PHYA) gene, strongly reducing the expression of PHYA. When grown under far-red light conditions ars4ars5 shows the same elongated hypocotyl phenotype as the previously described strong phyA-211 allele. Three independent phyA alleles, ars4, phyA-211 and a new T-DNA insertion allele (phyA-t) show increased tolerance to arsenate, although to a lesser degree than the ars4ars5 double mutant. Analyses of the ars5 single mutant show that ars5 exhibits stronger arsenic tolerance than ars4, and that ars5 is not linked to ars4. Arsenic tolerance assays with phyB-9 and phot1/phot2 mutants show that these photoreceptor mutants do not exhibit phyA-like arsenic tolerance. Fluorescence HPLC analyses show that elevated levels of phytochelatins were not detected in ars4, ars5 or ars4ars5, however increases in the thiols cysteine, gamma-glutamylcysteine and glutathione were observed. Compared with wild type, the total thiol levels in ars4, ars5 and ars4ars5 mutants were increased up to 80% with combined buthionine sulfoximine and arsenic treatments, suggesting the enhancement of mechanisms that mediate thiol synthesis in the mutants. The presented findings show that PHYA negatively regulates a pathway conferring arsenic tolerance, and that an enhanced thiol synthesis mechanism contributes to the arsenic tolerance of ars4ars5.