978 resultados para Musical Band
Resumo:
A fluorenone based alternating copolymer (PFN-DPPF) with a furan based fused aromatic moiety has been designed and synthesized. PFN-DPPF exhibits a small band gap with a lower HOMO value. Testing this polymer semiconductor as the active layer in organic thin-film transistors results in hole mobilities as high as 0.15 cm2 V-1 s-1 in air.
Resumo:
A novel solution processable donor-acceptor (D-A) based low band gap polymer semiconductor poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4- c]pyrrole-1,4-dione-alt-thienylenevinylene} (PDPPF-TVT), was designed and synthesized by a Pd-catalyzed Stille coupling route. An electron deficient furan based diketopyrrolopyrrole (DPP) block and electron rich thienylenevinylene (TVT) donor moiety were attached alternately in the polymer backbone. The polymer exhibited good solubility, film forming ability and thermal stability. The polymer exhibits wide absorption bands from 400 nm to 950 nm (UV-vis-NIR region) with absorption maximum centered at 782 nm in thin film. The optical band gap (Eoptg) calculated from the polymer film absorption onset is around 1.37 eV. The π-energy band level (ionization potential) calculated by photoelectron spectroscopy in air (PESA) for PDPPF-TVT is around 5.22 eV. AFM and TEM analyses of the polymer reveal nodular terrace morphology with optimized crystallinity after 200 °C thermal annealing. This polymer exhibits p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices. The highest hole mobility of 0.13 cm 2 V -1 s -1 is achieved in bottom gate and top-contact OTFT devices with on/off ratios in the range of 10 6-10 7. This work reveals that the replacement of thiophene by furan in DPP copolymers exhibits such a high mobility, which makes DPP furan a promising block for making a wide range of promising polymer semiconductors for broad applications in organic electronics.
Resumo:
Purpose To report an unusual case of a late-stage reactivation of immune stromal keratitis associated with herpes zoster ophthalmicus (HZO), occurring without any apparent predisposing factors, more than 4 years after an acute zoster dermatomal rash. Significant corneal hypoesthesia and a central band keratopathy developed within 6 months of the late-stage reactivation. The clinical case management, issues associated with management, and management options are discussed, including the use of standardized, regulatory approved, antibacterial medical honey. Case Report An 83-year-old woman presented for routine review with a reactivation of right anterior stromal keratitis and mild anterior uveitis, occurring more than 4 years after an acute HZO dermatomal rash and an associated initial episode of anterior stromal keratitis. Corneal sensation became markedly impaired, and over the subsequent 6 months, a right central band keratopathy developed despite oral antiviral and topical steroid therapy. Visual acuity with pinhole was reduced to 20/100 in the affected eye and moderate irritation and epiphora were experienced. The patient declined the surgical intervention options of chelation, lamellar keratectomy, and phototherapeutic keratectomy to treat the band keratopathy. Longer-term management has involved preservative-free artificial tears, eyelid hygiene, standardized antibacterial medical honey, topical nonpreserved steroid, and UV-protective wraparound sunglasses. The clinical condition has improved over 14 months with this ocular surface management regimen, and visual acuity of 20/30 is currently achieved in a comfortable eye. Conclusions The chronic and recurrent nature of HZO can be associated with significant corneal morbidity, even many years after the initial zoster episode. Long-term review and management of patients with a history of herpes zoster stromal keratitis are indicated following the initial corneal involvement. Standardized antibacterial medical honey can be considered in the management of the chronic ocular surface disease associated with HZO and warrants further evaluation in clinical trials.
Resumo:
This article enquires into the contextual dimensions of Indonesian consumerism by presenting the rise to national fame of provincial boy band, Kangen (Longing) Band. The case of Kangen Band suggests that Indonesian consumerism entails new ways of heralding the masses that rely on and play with old generic terms, kampungan (hick-ish) and ‘Melayu’ (Malay). It also reveals some of the specificities of the Indonesian consumerist environment, in which ring back tones, pirate recordings and corporatized fandom are important resources in the formation of consumer subjectivities.
Resumo:
This paper constitutes a major attempt to associate tympanic deflections with the mechanoreceptor organ location in an acoustic insect. The New Zealand tree weta (Hemideina thoracica) has tympanal ears located on each of the prothoracic tibiae. The tympana exhibit a sclerotized oval plate, membranous processes bulging out from the tibial cuticle and many loosely suspended ripples. We used microscanning laser Doppler vibrometry to determine how such a tympanal membrane vibrates in response to sound and whether the sclerotized region plays a role in hearing. The tympanum displays a single resonance at the calling frequency of the male, an unusual example of an insect tympana acting as a narrow bandpass filter. Both tympana resonate in phase with the stimulus and with each other. Histological sections show that the tympanal area is divided into two distinct regions, as in other ensiferans. An oval plate lies in the middle of a thickened region and is surrounded by a transparent and uniformly thin region. It is hinged dorsally to the tympanal rim and thus resembles the model of a ‘hinged flap’. The thickened region appears to act as a damping mass on the oscillation of the thin region, and vibration displacement is reduced in this area. The thinner area vibrates with higher amplitude, inducing mechanical pressure on the dorsal area adjacent to the crista acustica. We present a new model showing how the thickened region might confer a mechanical gain onto the activation of the crista acustica sensory neurons during the sound-induced oscillations.
Resumo:
The use of bat detectors to monitor bat activity is common. Although several papers have compared the performance of different brands, none have dealt with the effect of different habitats nor have they compared narrow- and broad-band detectors. In this study the performance of four brands of ultrasonic bat detector, including three narrowband and one broad-band model, were compared for their ability to detect a 40 kHz continuous sound of variable amplitude along 100 metre transects. Transects were laid out in two contrasting bat habitat types: grassland and forest. Results showed that the different brands of detector differed in their ability to detect the source in terms of maximum and minimum detectable distance of the source. The rate of sound degradation with distance as measured by each brand was also different. Significant differences were also found in the performance of different brands in open grassland versus deep forest. No significant differences were found within any brand of detector. Though not as sensitive as narrow-band detectors, broad-band models hold an advantage in their ability to identify species where several species are found sympatrically.
Resumo:
The hippocampus is an anatomically distinct region of the medial temporal lobe that plays a critical role in the formation of declarative memories. Here we show that a computer simulation of simple compartmental cells organized with basic hippocampal connectivity is capable of producing stimulus intensity sensitive wide-band fluctuations of spectral power similar to that seen in real EEG. While previous computational models have been designed to assess the viability of the putative mechanisms of memory storage and retrieval, they have generally been too abstract to allow comparison with empirical data. Furthermore, while the anatomical connectivity and organization of the hippocampus is well defined, many questions regarding the mechanisms that mediate large-scale synaptic integration remain unanswered. For this reason we focus less on the specifics of changing synaptic weights and more on the population dynamics. Spectral power in four distinct frequency bands were derived from simulated field potentials of the computational model and found to depend on the intensity of a random input. The majority of power occurred in the lowest frequency band (3-6 Hz) and was greatest to the lowest intensity stimulus condition (1% maximal stimulus). In contrast, higher frequency bands ranging from 7-45 Hz show an increase in power directly related with an increase in stimulus intensity. This trend continues up to a stimulus level of 15% to 20% of the maximal input, above which power falls dramatically. These results suggest that the relative power of intrinsic network oscillations are dependent upon the level of activation and that above threshold levels all frequencies are damped, perhaps due to over activation of inhibitory interneurons.
Resumo:
In my book Nirvana: The True Story (2006), I undertake an autoethnographical approach to biography, attempting to impart an understanding of my chosen subject - the rock band Nirvana - via discussion of my own experiences. On numerous occasions, I veer off into tangential asides, frequently using extensive footnotes to explain obscure musical references. Personal anecdotes are juxtaposed with "insider" information; at crucial points in the story (notable concerts, the first meeting of singer Kurt Cobain with his future wife Courtney Love, the news of Cobain's suicide), the linear thread of the narrative spills over into a multi-faceted approach, with several different (and sometimes opposing) voices given equal prominence. Despite my firsthand experience of the band, however, Nirvana: The True Story is not considered authoritative, even within its own field. This article considers the reasons why this may be the case.In my book Nirvana: The True Story (2006), I undertake an autoethnographical approach to biography, attempting to impart an understanding of my chosen subject - the rock band Nirvana - via discussion of my own experiences. On numerous occasions, I veer off into tangential asides, frequently using extensive footnotes to explain obscure musical references. Personal anecdotes are juxtaposed with "insider" information; at crucial points in the story (notable concerts, the first meeting of singer Kurt Cobain with his future wife Courtney Love, the news of Cobain's suicide), the linear thread of the narrative spills over into a multi-faceted approach, with several different (and sometimes opposing) voices given equal prominence. Despite my firsthand experience of the band, however, Nirvana: The True Story is not considered authoritative, even within its own field. This article considers the reasons why this may be the case.
Resumo:
This paper presents an approach to mobile robot localization, place recognition and loop closure using a monostatic ultra-wide band (UWB) radar system. The UWB radar is a time-of-flight based range measurement sensor that transmits short pulses and receives reflected waves from objects in the environment. The main idea of the poposed localization method is to treat the received waveform as a signature of place. The resulting echo waveform is very complex and highly depends on the position of the sensor with respect to surrounding objects. On the other hand, the sensor receives similar waveforms from the same positions.Moreover, the directional characteristics of dipole antenna is almost omnidirectional. Therefore, we can localize the sensor position to find similar waveform from waveform database. This paper proposes a place recognitionmethod based on waveform matching, presents a number of experiments that illustrate the high positon estimation accuracy of our UWB radar-based localization system, and shows the resulting loop detection performance in a typical indoor office environment and a forest.
Resumo:
Background: Malaria rapid diagnostic tests (RDTs) are appropriate for case management, but persistent antigenaemia is a concern for HRP2-detecting RDTs in endemic areas. It has been suggested that pan-pLDH test bands on combination RDTs could be used to distinguish persistent antigenaemia from active Plasmodium falciparum infection, however this assumes all active infections produce positive results on both bands of RDTs, an assertion that has not been demonstrated. Methods: In this study, data generated during the WHO-FIND product testing programme for malaria RDTs was reviewed to investigate the reactivity of individual test bands against P. falciparum in 18 combination RDTs. Each product was tested against multiple wild-type P. falciparum only samples. Antigen levels were measured by quantitative ELISA for HRP2, pLDH and aldolase. Results: When tested against P. falciparum samples at 200 parasites/μL, 92% of RDTs were positive; 57% of these on both the P. falciparum and pan bands, while 43% were positive on the P. falciparum band only. There was a relationship between antigen concentration and band positivity; ≥4 ng/mL of HRP2 produced positive results in more than 95% of P. falciparum bands, while ≥45 ng/mL of pLDH was required for at least 90% of pan bands to be positive. Conclusions: In active P. falciparum infections it is common for combination RDTs to return a positive HRP2 band combined with a negative pan-pLDH band, and when both bands are positive, often the pan band is faint. Thus active infections could be missed if the presence of a HRP2 band in the absence of a pan band is interpreted as being caused solely by persistent antigenaemia.
Resumo:
A significant challenge for the implementation of the Australian Curriculum: The Arts is the professional development of primary school teachers in all parts of the country. During 2012, the Sydney Symphony Orchestra (SSO) conducted a remote music professional development workshop as part of the Sydney Opera House’s Digital Education Program for teachers in New South Wales using the Department of Education’s Connected Classroom system which allows live synchronous interaction between facilitators and participants in multiple sites. In this article, we analyse observational and videotape data collected during this live professional development event to consider the opportunities and challenges presented by this type of professional learning experience in the arts. In particular, consideration is given to the impact of a remote musical interaction on embodied learning and aesthetic experience. We draw on actor-network theory to consider the ways in which a remote professional development experience differs to one in which all participants are present in the same space. Finally, we conclude that although there are significant differences in the type of learning that occurs in a remote music interaction, the online space provides a legitimate and potentially transforming experience for primary school teachers.
Resumo:
A creative practice as research, UNDER THIS SKY is the latest investigation in a 12-year study into the “QMF Model”, an application of principles of community and cultural practice that generates large-scale, music spectacle events that derive their narrative and expression from the communities in which they are performed. UNDER THIS SKY is a large-scale musical specially commissioned for the city of Logan (Queensland) as the signature work of the 2015 Queensland Musical Festival. The investigation centres around the capacity of the “QMF Model” to engage with performers and musicians of Logan and then, through community consultation, create a narrative based on idiosyncratic stories and themes that would culminate in a performance event in August 2015. Previous creative projects, Boomtown (Gladstone), Behind the Cane (Bowen) and The Road We’re On (Charleville), were conducted in relatively small communities, Gladstone being the largest. In UNDER THIS SKY, the model is being tested in a large metropolitan city (Logan – 300,000). The core principles of CACD (community arts and cultural development) are being interrogated and adapted to fit this large-scale, whole of community environment. The purpose is to refine and further validate the “QMF Model” as a viable and effective process for community/artistic partnerships. Since February 2014, professional artists and managers have facilitated and shaped the work, up-skilling performers over a periods of 12 months, developing new relationships and creating opportunities for participation at all levels of experience. The research methodology involved creative practice through a continuous cycle of action, reflection, adaptation and application.
Resumo:
Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.
Resumo:
This doctoral studies focused on the development of new materials for efficient use of solar energy for environmental applications. The research investigated the engineering of the band gap of semiconductor materials to design and optimise visible-light-sensitive photocatalysts. Experimental studies have been combined with computational simulation in order to develop predictive tools for a systematic understanding and design on the crystal and energy band structures of multi-component metal oxides.
Resumo:
He II photoelectron spectra of La, Ce and Yb show features which cannot be explained in terms of single electron excitations. It is proposed that these are due to formation of electron-hole paris.