951 resultados para Muscle fiber area


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mice in which peroxisome proliferator-activated receptor beta (PPARbeta) is selectively ablated in skeletal muscle myocytes were generated to elucidate the role played by PPARbeta signaling in these myocytes. These somatic mutant mice exhibited a muscle fiber-type switching toward lower oxidative capacity that preceded the development of obesity and diabetes, thus demonstrating that PPARbeta is instrumental in myocytes to the maintenance of oxidative fibers and that fiber-type switching is likely to be the cause and not the consequence of these metabolic disorders. We also show that PPARbeta stimulates in myocytes the expression of PGC1alpha, a coactivator of various transcription factors, known to play an important role in slow muscle fiber formation. Moreover, as the PGC1alpha promoter contains a PPAR response element, the effect of PPARbeta on the formation and/or maintenance of slow muscle fibers can be ascribed, at least in part, to a stimulation of PGC1alpha expression at the transcriptional level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We compared the extent and origin of muscle fatigue induced by short-pulse-low-frequency [conventional (CONV)] and wide-pulse-high-frequency (WPHF) neuromuscular electrical stimulation. We expected CONV contractions to mainly originate from depolarization of axonal terminal branches (spatially determined muscle fiber recruitment) and WPHF contractions to be partly produced via a central pathway (motor unit recruitment according to size principle). Greater neuromuscular fatigue was, therefore, expected following CONV compared with WPHF. Fourteen healthy subjects underwent 20 WPHF (1 ms-100 Hz) and CONV (50 μs-25 Hz) evoked isometric triceps surae contractions (work/rest periods 20:40 s) at an initial target of 10% of maximal voluntary contraction (MVC) force. Force-time integral of the 20 evoked contractions (FTI) was used as main index of muscle fatigue; MVC force loss was also quantified. Central and peripheral fatigue were assessed by voluntary activation level and paired stimulation amplitudes, respectively. FTI in WPHF was significantly lower than in CONV (21,717 ± 11,541 vs. 37,958 ± 9,898 N·s P<0,001). The reductions in MVC force (WPHF: -7.0 ± 2.7%; CONV: -6.2 ± 2.5%; P < 0.01) and paired stimulation amplitude (WPHF: -8.0 ± 4.0%; CONV: -7.4 ± 6.1%; P < 0.001) were similar between conditions, whereas no change was observed for voluntary activation level (P > 0.05). Overall, our results showed a different motor unit recruitment pattern between the two neuromuscular electrical stimulation modalities with a lower FTI indicating greater muscle fatigue for WPHF, possibly limiting the presumed benefits for rehabilitation programs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Skeletal muscle is considered to be a major site of energy expenditure and thus is important in regulating events affecting metabolic disorders. Over the years, both in vitro and in vivo approaches have established the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in fatty acid metabolism and energy expenditure in skeletal muscles. Pharmacological activation of PPARβ/δ by specific ligands regulates the expression of genes involved in lipid use, triglyceride hydrolysis, fatty acid oxidation, energy expenditure, and lipid efflux in muscles, in turn resulting in decreased body fat mass and enhanced insulin sensitivity. Both the lipid-lowering and the anti-diabetic effects exerted by the induction of PPARβ/δ result in the amelioration of symptoms of metabolic disorders. This review summarizes the action of PPARβ/δ activation in energy metabolism in skeletal muscles and also highlights the unexplored pathways in which it might have potential effects in the context of muscular disorders. Numerous preclinical studies have identified PPARβ/δ as a probable potential target for therapeutic interventions. Although PPARβ/δ agonists have not yet reached the market, several are presently being investigated in clinical trials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inflammation participates in tissue repair through multiple mechanisms including directly regulating the cell fate of resident progenitor cells critical for successful regeneration. Upon surveying target cell types of the TNF ligand TWEAK, we observed that TWEAK binds to all progenitor cells of the mesenchymal lineage and induces NF-kappaB activation and the expression of pro-survival, pro-proliferative and homing receptor genes in the mesenchymal stem cells, suggesting that this pro-inflammatory cytokine may play an important role in controlling progenitor cell biology. We explored this potential using both the established C2C12 cell line and primary mouse muscle myoblasts, and demonstrated that TWEAK promoted their proliferation and inhibited their terminal differentiation. By generating mice deficient in the TWEAK receptor Fn14, we further showed that Fn14-deficient primary myoblasts displayed significantly reduced proliferative capacity and altered myotube formation. Following cardiotoxin injection, a known trigger for satellite cell-driven skeletal muscle regeneration, Fn14-deficient mice exhibited reduced inflammatory response and delayed muscle fiber regeneration compared with wild-type mice. These results indicate that the TWEAK/Fn14 pathway is a novel regulator of skeletal muscle precursor cells and illustrate an important mechanism by which inflammatory cytokines influence tissue regeneration and repair. Coupled with our recent demonstration that TWEAK potentiates liver progenitor cell proliferation, the expression of Fn14 on all mesenchymal lineage progenitor cells supports a broad involvement of this pathway in other tissue injury and disease settings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a ubiquitously expressed gene with higher levels observed in skeletal muscle. Recently, our laboratory showed (Bonala S, Lokireddy S, Arigela H, Teng S, Wahli W, Sharma M, McFarlane C, Kambadur R. J Biol Chem 287: 12935-12951, 2012) that PPARβ/δ modulates myostatin activity to induce myogenesis in skeletal muscle. In the present study, we show that PPARβ/δ-null mice display reduced body weight, skeletal muscle weight, and myofiber atrophy during postnatal development. In addition, a significant reduction in satellite cell number was observed in PPARβ/δ-null mice, suggesting a role for PPARβ/δ in muscle regeneration. To investigate this, tibialis anterior muscles were injured with notexin, and muscle regeneration was monitored on days 3, 5, 7, and 28 postinjury. Immunohistochemical analysis revealed an increased inflammatory response and reduced myoblast proliferation in regenerating muscle from PPARβ/δ-null mice. Histological analysis confirmed that the regenerated muscle fibers of PPARβ/δ-null mice maintained an atrophy phenotype with reduced numbers of centrally placed nuclei. Even though satellite cell numbers were reduced before injury, satellite cell self-renewal was found to be unaffected in PPARβ/δ-null mice after regeneration. Previously, our laboratory had showed (Bonala S, Lokireddy S, Arigela H, Teng S, Wahli W, Sharma M, McFarlane C, Kambadur R. J Biol Chem 287: 12935-12951, 2012) that inactivation of PPARβ/δ increases myostatin signaling and inhibits myogenesis. Our results here indeed confirm that inactivation of myostatin signaling rescues the atrophy phenotype and improves muscle fiber cross-sectional area in both uninjured and regenerated tibialis anterior muscle from PPARβ/δ-null mice. Taken together, these data suggest that absence of PPARβ/δ leads to loss of satellite cells, impaired skeletal muscle regeneration, and postnatal myogenesis. Furthermore, our results also demonstrate that functional antagonism of myostatin has utility in rescuing these effects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of the present study was to propose an orthosis of light material that would be functional for the animal and that would maintain only the ankle joint immobilized. Male Wistar rats (3 to 4 months old, 250-300 g) were divided into 2 groups (N = 6): control and immobilized for 7 days. Rats were anesthetized with sodium pentobarbital (40 mg/kg weight) and the left hindlimb was immobilized with the orthoses composed of acrylic resin model, abdominal belt and lateral supports. The following analyses were performed: glycogen content of the soleus, extensor digitorum longus, white gastrocnemius, red gastrocnemius, and tibialis anterior muscles by the phenol sulfuric method, and the weight, fiber area and intramuscular connective tissue of the soleus by the planimetric system. Data were analyzed statistically by the Kolmogorov-Smirnov, Student t and Wilcoxon tests. Immobilization decreased glycogen in all muscles (P < 0.05; soleus: 31.6%, white gastrocnemius: 56.6%, red gastrocnemius: 39%, extensor digitorum longus: 41.7%, tibialis anterior: 45.2%) in addition to reducing soleus weight by 34% (P < 0.05). Furthermore, immobilization promoted reduction of the fiber area (43%, P < 0.05) and increased the connective tissue (200%, P < 0.05). The orthosis model was efficient comparing with another alternative immobilization model, like plaster casts, in promoting skeletal muscle alterations, indicating that it could be used as a new model in other studies related to muscle disuse.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of the present study was to assess the effect of transcutaneous electrical diaphragmatic stimulation (TEDS) on different types of diaphragm muscle fibers. Male Wistar rats (8-12 weeks old) were divided into 2 experimental groups (N = 8 in each group): 1) control, 2) animals submitted to TEDS [frequency = 50 Hz; T ON/T OFF (contraction/relaxation time) = 2/2 s; pulse duration = 0.4 ms, intensity = 5 mA with a 1 mA increase every 3 min for 20 min] for 7 days. After completing this treatment period, the I, IIA, IIB, and IID diaphragm muscle fibers were identified using the mATPase technique. Statistical analysis consisted of the normality, homoscedasticity and t-tests (P < 0.05). There was a 19.6% (P < 0.05) reduction in the number of type I fibers and a 49.7% increase (P < 0.05) in type IID fibers in the TEDS group compared with the control group. An important result of the present study was that electrical stimulation with surface electrodes was efficient in altering the distribution of fibers in diaphragm muscle. This therapeutic resource could be used in the treatment of respiratory muscle alterations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It has been demonstrated that resistance exercise improves cognitive functions in humans. Thus, an animal model that mimics this phenomenon can be an important tool for studying the underlying neurophysiological mechanisms. Here, we tested if an animal model for resistance exercise was able to improve the performance in a hippocampus-dependent memory task. In addition, we also evaluated the level of insulin-like growth factor 1/insulin growth factor receptor (IGF-1/IGF-1R), which plays pleiotropic roles in the nervous system. Adult male Wistar rats were divided into three groups (N = 10 for each group): control, SHAM, and resistance exercise (RES). The RES group was submitted to 8 weeks of progressive resistance exercise in a vertical ladder apparatus, while the SHAM group was left in the same apparatus without exercising. Analysis of a cross-sectional area of the flexor digitorum longus muscle indicated that this training period was sufficient to cause muscle fiber hypertrophy. In a step-through passive avoidance task (PA), the RES group presented a longer latency than the other groups on the test day. We also observed an increase of 43 and 94% for systemic and hippocampal IGF-1 concentration, respectively, in the RES group compared to the others. A positive correlation was established between PA performance and systemic IGF-1 (r = 0.46, P < 0.05). Taken together, our data indicate that resistance exercise improves the hippocampus-dependent memory task with a concomitant increase of IGF-1 level in the rat model. This model can be further explored to better understand the effects of resistance exercise on brain functions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Myostatin, a member of the TGF-beta family, has been identified as a powerful inhibitor of muscle growth. Absence or blockade of myostatin induces massive skeletal muscle hypertrophy that is widely attributed to proliferation of the population of muscle fiber-associated satellite cells that have been identified as the principle source of new muscle tissue during growth and regeneration. Postnatal blockade of myostatin has been proposed as a basis for therapeutic strategies to combat muscle loss in genetic and acquired myopathies. But this approach, according to the accepted mechanism, would raise the threat of premature exhaustion of the pool of satellite cells and eventual failure of muscle regeneration. Here, we show that hypertrophy in the absence of myostatin involves little or no input from satellite cells. Hypertrophic fibers contain no more myonuclei or satellite cells and myostatin had no significant effect on satellite cell proliferation in vitro, while expression of myostatin receptors dropped to the limits of detectability in postnatal satellite cells. Moreover, hypertrophy of dystrophic muscle arising from myostatin blockade was achieved without any apparent enhancement of contribution of myonuclei from satellite cells. These findings contradict the accepted model of myostatin-based control of size of postnatal muscle and reorient fundamental investigations away from the mechanisms that control satellite cell proliferation and toward those that increase myonuclear domain, by modulating synthesis and turnover of structural muscle fiber proteins. It predicts too that any benefits of myostatin blockade in chronic myopathies are unlikely to impose any extra stress on the satellite cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aim: Changes in skeletal muscle morphology and metabolism are associated with limited functional capacity in heart failure, which can be attenuated by neuromuscular electrical stimulation (ES). The purpose of the present study was to analyse the effects of ES upon GLUT-4 protein content, fibre structure and vessel density of the skeletal muscle in a rat model of HF subsequent to myocardial infarction. Methods: Forty-four male Wistar rats were assigned to one of four groups: sham (S), sham submitted to ES (S+ES), heart failure (HF) and heart failure submitted to ES (HF+ES). The rats in the ES groups were submitted to ES of the left leg during 20 days (2.5 kHz, once a day, 30 min, duty cycle 50%- 15 s contraction/15 s rest). After this period, the left tibialis anterior muscle was collected from all the rats for analysis. Results: HF+ES rats showed lower values of lung congestion when compared with HF rats (P = 0.0001). Although muscle weight was lower in HF rats than in the S group, thus indicating hypotrophy, 20 days of ES led to their recovery (P < 0.0001). In both groups submitted to ES, there was an increase in muscle vessel density (P < 0.04). Additionally, heart failure determined a 49% reduction in GLUT-4 protein content (P < 0.03), which was recovered by ES (P < 0.01). Conclusion: In heart failure, ES improves morphological changes and raises GLUT-4 content in skeletal muscle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Avaliou-se o efeito da linhagem, do sistema de criação e do sexo sobre o peso vivo, o rendimento de carcaça e de pernas e os aspectos morfológicos das fibras musculares esqueléticas do músculo flexor longo do hálux de frangos de corte. O delineamento experimental foi inteiramente casualizado, em esquema fatorial 4 x 2 x 2, ou seja, quatro linhagens (Ross-308, Pescoço Pelado Label Rouge, Caipirinha e Paraíso Pedrês), dois sistemas de criação (confinamento e semiconfinamento) e dois sexos, com duas repetições por tratamento, sendo que cada ave retirada ao acaso aos 56 dias de idade foi considerada uma unidade experimental, totalizando 64 aves. A linhagem Ross apresentou maior peso vivo e maiores pesos de carcaça, de pernas, de carne de penas e do músculo flexor longo do hálux e maiores rendimentos de carcaça e de carnes de pernas que as outras linhagens. A maior massa muscular das aves selecionadas para alta taxa de crescimento está relacionada ao aumento na área dos três tipos de fibras musculares (SO, FOG e FG). Machos apresentaram maior massa muscular e musculatura mais glicolítica que fêmeas. O sistema de semiconfinamento alterou a composição de fibras musculares esqueléticas dos machos, tornando-a mais oxidativa, porém, esse efeito não foi observado nas fêmeas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Morphological and histochemical methods were used to evaluate the myotomal muscle characteristics of pacu (Piaractus mesopotamicus) from hatching to 40 days old. During the larval period, the musculature consisted predominantly of white muscle. White and red muscle mass increased at 10, 20, 30 and 40 days after hatching. The larvae had round muscle fibers with a moderate degree of maturation and central nuclei. In subsequent phases, small and immature fibers were visible near larger and more differentiated fibers. Undifferentiated cells or presumptive myoblasts located in embryogenic zones were visible in the dorsal and ventral regions, and were more evident at 30 and 40 days. The red muscle fibers located in the subdermal region, had oxidative metabolism and slow contraction, whereas the more predominant white muscle fibers had glycolytic metabolism and fast contraction. Our findings indicate that during the initial phases, myotomal muscle growth in pacu occurs by both, muscle fiber hypertrophy and hyperplasia. The analysis of frequency of red and white muscle fibers shows that hyperplastic growth is intense in this period. As the growth rate in adult fish is related to the number of muscle fibers in young fish, extrinsic factors could change the muscle fiber phenotype and influence their ultimate size.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder characterized by the progressive loss of muscular strength. Mdx mutant mice show a marked deficiency in dystrophin, which was related to muscle membrane stability. The aim of this study was to verify the possible protective anti-inflammatory effect of citrus oil on mdx muscle fibers. Thus, adult male and female mdx mice (014/06-CEEA) were divided into control and citrus-treated. After 60 days of treatment, one ml of blood was collected for creatine kinase (CK) test. Diaphragm, sternomastoideus, anterior tibial and gastrocnemius muscles were removed and processed according to histological routine methods. The observed alterations indicate a direct effect of citrus. Recent studies have improved the diagnosis of muscular diseases but with no definitions of efficient treatments. Intervention with several therapies is important to many patients presenting muscular dystrophy, which enables them to live longer and be more active, while there is no development of gene therapies.