905 resultados para Muscle contraction -- Physiology
Resumo:
Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.
Resumo:
The effects of a moderate electrical stimulation on superoxide and nitric oxide production by primary cultured skeletal muscle cells were evaluated. The involvement of the main sites of these reactive species production and the relationship between superoxide and nitric oxide production were also examined. Production of superoxide was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. Electrical stimulation increased superoxide production after 1?h incubation. A xanthine oxidase inhibitor caused a partial decrease of superoxide generation and a significant amount of mitochondria-derived superoxide was also observed. Nitric oxide production was assessed by nitrite measurement and by using 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Using both methods an increased production of nitric oxide was obtained after electrical stimulation, which was also able to induce an increase of iNOS content and NF-?B activation. The participation of superoxide in nitric oxide production was investigated by incubating cells with DAF-2-DA in the presence or absence of electrical stimulation, a superoxide generator system (xanthinexanthine oxidase), a mixture of NOS inhibitors and SOD-PEG. Our data show that the induction of muscle contraction by a moderate electrical stimulation protocol led to an increased nitric oxide production that can be controlled by superoxide generation. The cross talk between these reactive species likely plays a role in exercise-induced maintenance and adaptation by regulating muscular glucose metabolism, force of contraction, fatigue, and antioxidant systems activities. J. Cell. Physiol. 227: 25112518, 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
"A chronological list of important contributions to the physiology of muscle": p. 53-55.
Resumo:
The present investigation was designed to investigate the effect of the diterpene ent-pimara-8(14),15-dien-19-oic acid (pimaradienoic acid, PA) on smooth muscle extracellular Ca2+ influx. To this end, the effect of PA on phenylephrine- and KCI-induced increases in cytosolic calcium concentration ([Ca2+](c)) measured by the variation in the ratio of fluorescence intensities (R340/ 380 nm) of Fura-2, was analysed. Whether bolus injection of PA could induce hypotensive responses in conscious normotensive rats was also evaluated. PA inhibited the contraction induced by phenylephrine (0.03 or 10 mu mol L-1) and KCI (30 or 90 mmol L-1) in endothelium-denuded rat aortic rings in a concentration dependent manner. Pre-treatment with PA (110, 100, 200 mu mol L-) attenuated the contraction induced by CaCl2 (0.5 nmol L(-)1 or 2.5 mmol L-1) in denuded rat aorta exposed to Ca2+- free medium containing phenylephrine (0.1 mu mol L-1) or KCI (30 mmol L-1). Interestingly, the inhibitory effect displayed by PA on CaCl2-induced contraction was more pronounced when KCI was used as the stimulant. Phenylephrine- and KCI-induced increases in (Ca2+,](c) were inhibited by PA. Similarly, verapamil, a Ca2+-channel blocker, also inhibited the increase in [Ca2+](c) induced by either phenylephrine or KCI. Finally, bolus injection of PA (1-15 mg kg(-1)) produced a dose-dependent decrease in mean arterial pressure in conscious normotensive rats. The results provide the first direct evidence that PA reduces vascular contractility by reducing extracellular Ca2+ influx through smooth muscle cellular membrane, a mechanism that could mediate the hypotensive response induced by this diterpene in normotensive rats.
Resumo:
Objective: To determine whether voluntary abdominal muscle contraction is associated with pelvic floor muscle activity. Design: Pelvic floor muscle activity was recorded during contractions of the abdominal muscles at 3 different intensities in supine and standing positions. Setting: Research laboratory. Participants: Six women and 1 man with no histories of lower back pain. Interventions: Not applicable. Main Outcome Measures: Electromyographic activity of the pelvic floor muscles was recorded with surface electrodes inserted into the anus and vagina. These recordings were corroborated by measurements of anal and vaginal pressures. Gastric pressure was recorded in 2 subjects. Results: Pelvic floor muscle electromyography increased with contraction of the abdominal muscles. With strong abdominal contraction, pelvic floor muscle activity did not differ from that recorded during a maximal pelvic floor muscle effort. The pressure recordings confirmed these data. The increase in pressure recorded in the anus and vagina preceded the pressure in the abdomen. Conclusions: In healthy subjects, voluntary activity in the abdominal muscles results in increased pelvic floor muscle activity. The increase in pelvic floor pressure before the increase in the abdomen pressure indicates that this response is preprogrammed. Dysfunction of the pelvic floor muscles can result in urinary and fecal incontinence. Abdominal muscle training to rehabilitate those muscles may be useful in treating these conditions.
Resumo:
Patella stabilizer muscle response and patellar kinematics were evaluated in 19 women with anterior knee pain (AKP) and 20 healthy women during maximum voluntary isometric contraction (MVIC) with the knee positioned at 15 degrees, 30 degrees and 45 degrees flexion during open (OKC) and closed (CKC) kinetic chain exercises. Patellar kinematics was evaluated through patellar tilt and displacement, and the electrical activity of patellar stabilizers through the root mean square normalized during MVIC and OKC with the knee at 90 degrees flexion. Data revealed that the vastus medialis oblique muscle (VMO) was more active in the control group compared to the AKP group during OKC exercises with the knee at 45 degrees flexion. However, no difference in the patellar kinematics was observed between these groups; nevertheless, the correlation between these parameters also showed, with the knee at 45 degrees flexion, that lateral patellar tilt increase was associated with a reduction in the activity of lateral patellar stabilizers in the control group and with an increase in the VMO activity in the AKP group. In conclusion, electrical activity is an important factor in evaluating AKP and in AKP treatment evolution. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Objective: The objective of this study is to evaluate the visual feedback influence on pelvic floor muscle contraction. Study design: Seventeen nulliparous, urinary-continent women participated in this study. Pelvic floor muscle strength with and without the use of visual feedback was measured with a dynamometric speculum in two directions (anteroposterior and left-right). To compare the mean strength values with and without the use of visual feedback, the t test was applied. Results: There was no significant difference between the pelvic floor muscle anteroposterior strength values with and without the use of visual feedback (p = 0.30), and no significant difference for the left-right strength (p = 0.37). Conclusion: There was no difference between the pelvic floor muscle strength values with and without the use of visual feedback. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Dynamic exercise evokes sustained cardiovascular changes, which are characterized by blood pressure and heart rate (HR) increases. Although it is well accepted that there is a central nervous system (CNS) mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is limited. The bed nucleus of the stria terminalis (BST) is a forebrain structure known to be involved in central cardiovascular control. Based on this, we tested the hypothesis that BST modulates HR and mean arterial pressure (MAP) responses evoked when rats are submitted to dynamic exercise. Male Wistar rats were tested at three levels of exercise (0.4, 0.8 and 1 km h-1) on a rodent treadmill before and after BST treatment with CoCl(2), a non-selective neurotransmission blocker. Bilateral microinjection of CoCl(2) (1 nmol in 100 nl artificial cerebrospinal fluid) into the BST reduced the pressor response to exercise at 0.4 km h-1 as well as the tachycardic responses evoked by exercise at 0.4, 0.8 and 1 km h-1. The BST treatment with CoCl(2) did not affect baseline MAP or HR, suggesting a lack of tonic BST influence on cardiovascular parameters at rest. Moreover, BST treatment with CoCl(2) did not affect motor performance in the open-field test, which indicates that effects of BST inhibition on cardiovascular responses to dynamic exercise are not due to changes in motor activity. The present results suggest that local neurotransmission in the BST modulates exercise-related cardiovascular adjustments. Data indicate that BST facilitates pressor and tachycardic responses evoked by dynamic exercise in rats.
Resumo:
Within the skeletal muscle cell at the onset of muscular contraction, phosphocreatine (PCr) represents the most immediate reserve for the rephosphorylation of adenosine triphosphate (ATP). As a result, its concentration can be reduced to less than 30% of resting levels during intense exercise. As a fall in the level of PCr appears to adversely affect muscle contraction, and therefore power output in a subsequent bout, maximising the rate of PCr resynthesis during a brief recovery period will be of benefit to an athlete involved in activities which demand intermittent exercise. Although this resynthesis process simply involves the rephosphorylation of creatine by aerobically produced ATP (with the release of protons), it has both a fast and slow component, each proceeding at a rate that is controlled by different components of the creatine kinase equilibrium. The initial fast phase appears to proceed at a rate independent of muscle pH. Instead, its rate appears to be controlled by adenosine diphosphate (ADP) levels; either directly through its free cytosolic concentration, or indirectly, through its effect on the free energy of ATP hydrolysis. Once this fast phase of recovery is complete, there is a secondary slower phase that appears almost certainly rate-dependant on the return of the muscle cell to homeostatic intracellular pH. Given the importance of oxidative phosphorylation in this resynthesis process, those individuals with an elevated aerobic power should be able to resynthesise PCr at a more rapid rate than their sedentary counterparts. However, results from studies that have used phosphorus nuclear magnetic resonance (P-31-NMR) spectroscopy, have been somewhat inconsistent with respect to the relationship between aerobic power and PCr recovery following intense exercise. Because of the methodological constraints that appear to have limited a number of these studies, further research in this area is warranted.
Resumo:
OBJECTIVE: To study the effect of propafenone on the contractile function of latissimus dorsi muscle isolated from rats in an organ chamber. METHODS: We studied 20 latissimus dorsi muscles of Wistar rats and divided them into 2 groups: group I (n=10), or control group - we studied the feasibility of muscle contractility; group II (n=10), in which the contralateral muscles were grouped - we analyzed the effect of propafenone on muscle contractility. After building a muscle ring, 8 periods of sequential 2-minute baths were performed, with intervals of preprogrammed electrical stimulation using a pacemaker of 50 stimuli/min. In group II, propafenone, at the concentration of 9.8 µg/mL, was added to the bath in period 2 and withdrawn in period 4. RESULTS: In group I, no significant depression in muscle contraction occurred up to period 5 (p>0.05). In group II, a significant depression occurred in all periods, except between the last 2 periods (p<0.05). Comparing groups I and II only in period 1, which was a standard period for both groups, we found no significant difference (p>0.05). CONCLUSION: Propafenone had a depressing effect on the contractile function of latissimus dorsi muscle isolated from rats and studied in an organ chamber.
Resumo:
The pathogenesis of Duchenne muscular dystrophy (DMD), characterised by lack of the cytoskeletal protein dystrophin, is not completely understood. An early event in the degenerative process of DMD muscle could be a rise in cytosolic calcium concentration. In order to investigate whether this leads to alterations of contractile behaviour, we studied the excitability and contractile properties of cultured myotubes from control (C57BL/10) and mdx mice, an animal model for DMD. The myotubes were stimulated electrically and their motion was recorded photometrically. No significant differences were found between control and mdx myotubes with respect to the following parameters: chronaxy and rheobase (0.33 +/- 0.03 ms and 23 +/- 4 V vs. 0.39 +/- 0.07 ms and 22 +/- 2 V for C57 and mdx myotubes, respectively), tetanisation frequency (a similar distribution pattern was found between 5 and 30 Hz), fatigue during tetanus (found in 35% of both types of myotubes) and post-tetanic contracture. In contrast, contraction and relaxation times were longer (P < 0.005) in mdx (36 +/- 2 and 142 +/- 13 ms, respectively) than in control myotubes (26 +/- 1 and 85 +/- 9 ms, respectively). Together with our earlier findings, these results suggest a decreased capacity for calcium removal in mdx cells leading, in particular, to alterations of muscle relaxation.
Resumo:
Aging is commonly associated with a loss of muscle mass and strength, resulting in falls, functional decline, and the subjective feeling of weakness. Exercise modulates the morbidities of muscle aging. Most studies, however, have examined muscle-loss changes in sedentary aging adults. This leaves the question of whether the changes that are commonly associated with muscle aging reflect the true physiology of muscle aging or whether they reflect disuse atrophy. This study evaluated whether high levels of chronic exercise prevents the loss of lean muscle mass and strength experienced in sedentary aging adults. A cross-section of 40 high-level recreational athletes ("masters athletes") who were aged 40 to 81 years and trained 4 to 5 times per week underwent tests of health/activity, body composition, quadriceps peak torque (PT), and magnetic resonance imaging of bilateral quadriceps. Mid-thigh muscle area, quadriceps area (QA), subcutaneous adipose tissue, and intramuscular adipose tissue were quantified in magnetic resonance imaging using medical image processing, analysis, and visualization software. One-way analysis of variance was used to examine age group differences. Relationships were evaluated using Spearman correlations. Mid-thigh muscle area (P = 0.31) and lean mass (P = 0.15) did not increase with age and were significantly related to retention of mid-thigh muscle area (P < 0.0001). This occurred despite an increase in total body fat percentage (P = 0.003) with age. Mid-thigh muscle area (P = 0.12), QA (P = 0.17), and quadriceps PT did not decline with age. Specific strength (strength per QA) did not decline significantly with age (P = 0.06). As muscle area increased, PT increased significantly (P = 0.008). There was not a significant relationship between intramuscular adipose tissue (P = 0.71) or lean mass (P = 0.4) and PT. This study contradicts the common observation that muscle mass and strength decline as a function of aging alone. Instead, these declines may signal the effect of chronic disuse rather than muscle aging. Evaluation of masters athletes removes disuse as a confounding variable in the study of lower-extremity function and loss of lean muscle mass. This maintenance of muscle mass and strength may decrease or eliminate the falls, functional decline, and loss of independence that are commonly seen in aging adults.
Resumo:
This study aimed to quantitatively describe and compare whole-body fat oxidation kinetics in cycling and running using a sinusoidal mathematical model (SIN). Thirteen moderately trained individuals (7 men and 6 women) performed two graded exercise tests, with 3-min stages and 1 km h(-1) (or 20 W) increment, on a treadmill and on a cycle ergometer. Fat oxidation rates were determined using indirect calorimetry and plotted as a function of exercise intensity. The SIN model, which includes three independent variables (dilatation, symmetry and translation) that account for main quantitative characteristics of kinetics, provided a mathematical description of fat oxidation kinetics and allowed for determination of the intensity (Fat(max)) that elicits maximal fat oxidation (MFO). While the mean fat oxidation kinetics in cycling formed a symmetric parabolic curve, the mean kinetics during running was characterized by a greater dilatation (i.e., widening of the curve, P < 0.001) and a rightward asymmetry (i.e., shift of the peak of the curve to higher intensities, P = 0.01). Fat(max) was significantly higher in running compared with cycling (P < 0.001), whereas MFO was not significantly different between modes of exercise (P = 0.36). This study showed that the whole-body fat oxidation kinetics during running was characterized by a greater dilatation and a rightward asymmetry compared with cycling. The greater dilatation may be mainly related to the larger muscle mass involved in running while the rightward asymmetry may be induced by the specific type of muscle contraction.
Resumo:
CONTEXT: Sarcopenia is thought to be associated with mitochondrial (Mito) loss. It is unclear whether the decrease in Mito content is consequent to aging per se or to decreased physical activity. OBJECTIVES: The objective of the study was to examine the influence of fitness on Mito content and function and to assess whether exercise could improve Mito function in older adults. DESIGN AND SUBJECTS: Three distinct studies were conducted: 1) a cross-sectional observation comparing Mito content and fitness in a large heterogeneous cohort of older adults; 2) a case-control study comparing chronically endurance-trained older adults and sedentary (S) subjects matched for age and gender; and 3) a 4-month exercise intervention in S. SETTING: The study was conducted at a university-based clinical research center. OUTCOMES: Mito volume density (MitoVd) was assessed by electron microscopy from vastus lateralis biopsies, electron transport chain proteins by Western blotting, mRNAs for transcription factors involved in M biogenesis by quantitative RT-PCR, and in vivo oxidative capacity (ATPmax) by (31)P-magnetice resonance spectroscopy. Peak oxygen uptake was measured by graded exercise test. RESULTS: Peak oxygen uptake was strongly correlated with MitoVd in 80 60- to 80-year-old adults. Comparison of chronically endurance-trained older adults vs S revealed differences in MitoVd, ATPmax, and some electron transport chain protein complexes. Finally, exercise intervention confirmed that S subjects are able to recover MitoVd, ATPmax, and specific transcription factors. CONCLUSIONS: These data suggest the following: 1) aging per se is not the primary culprit leading to Mito dysfunction; 2) an aerobic exercise program, even at an older age, can ameliorate the loss in skeletal muscle Mito content and may prevent aging muscle comorbidities; and 3) the improvement of Mito function is all about content.
Resumo:
Mitochondrial impairment is hypothesized to contribute to the pathogenesis of insulin resistance. Mitofusin (Mfn) proteins regulate the biogenesis and maintenance of the mitochondrial network, and when inactivated, cause a failure in the mitochondrial architecture and decreases in oxidative capacity and glucose oxidation. Exercise increases muscle mitochondrial content, size, oxidative capacity and aerobic glucose oxidation. To address if Mfn proteins are implicated in these exercise-induced responses, we measured Mfn1 and Mfn2 mRNA levels, pre-, post-, 2 and 24 h post-exercise. Additionally, we measured the expression levels of transcriptional regulators that control mitochondrial biogenesis and functions, including PGC-1alpha, NRF-1, NRF-2 and the recently implicated ERRalpha. We show that Mfn1, Mfn2, NRF-2 and COX IV mRNA were increased 24 h post-exercise, while PGC-1alpha and ERRalpha mRNA increased 2 h post-exercise. Finally, using in vitro cellular assays, we demonstrate that Mfn2 gene expression is driven by a PGC-1alpha programme dependent on ERRalpha. The PGC-1alpha/ERRalpha-mediated induction of Mfn2 suggests a role of these two factors in mitochondrial fusion. Our results provide evidence that PGC-1alpha not only mediates the increased expression of oxidative phosphorylation genes but also mediates alterations in mitochondrial architecture in response to aerobic exercise in humans