882 resultados para Muscle O2 conductance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ATP-binding cassette (ABC) transporters bind and hydrolyze ATP. In the cystic fibrosis transmembrane conductance regulator Cl− channel, this interaction with ATP generates a gating cycle between a closed (C) and two open (O1 and O2) conformations. To understand better how ATP controls channel activity, we examined gating transitions from the C to the O1 and O2 states and from these open states to the C conformation. We made three main observations. First, we found that the channel can open into either the O1 or O2 state, that the frequency of transitions to both states was increased by ATP concentration, and that ATP increased the relative proportion of openings into O1 vs. O2. These results indicate that ATP can interact with the closed state to open the channel in at least two ways, which may involve binding to nucleotide-binding domains (NBDs) NBD1 and NBD2. Second, ATP prolonged the burst duration and altered the way in which the channel closed. These data suggest that ATP also interacts with the open channel. Third, the channel showed runs of specific types of open–closed transitions. This finding suggests a mechanism with more than one cycle of gating transitions. These data suggest models to explain how ATP influences conformational transitions in cystic fibrosis transmembrane conductance regulator and perhaps other ABC transporters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Et; EC 4.1.1.39) measured in different-aged leaves of sunflower (Helianthus annuus) and other plants grown under different light intensities, varied from 2 to 75 μmol active sites m−2. Mesophyll conductance (μ) was measured under 1.5% O2, as well as postillumination CO2 uptake (assimilatory charge, a gas-exchange measure of the ribulose-1,5-bisphosphate pool). The dependence of μ on Et saturated at Et = 30 μmol active sites m−2 and μ = 11 mm s−1 in high-light-grown leaves. In low-light-grown leaves the dependence tended toward saturation at similar Et but reached a μ of only 6 to 8 mm s−1. μ was proportional to the assimilatory charge, with the proportionality constant (specific carboxylation efficiency) between 0.04 and 0.075 μm−1 s−1. Our data show that the saturation of the relationship between Et and μ is caused by three limiting components: (a) the physical diffusion resistance (a minor limitation), (b) less than full activation of Rubisco (related to Rubisco activase and the slower diffusibility of Rubisco at high protein concentrations in the stroma), and (c) chloroplast metabolites, especially 3-phosphoglyceric acid and free inorganic phosphate, which control the reaction kinetics of ribulose-1,5-bisphosphate carboxylation by competitive binding to active sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adult skeletal muscle Na+ channel mu1 possesses a highly conserved segment between subunit domains III and IV containing a consensus protein kinase C (PKC) phosphorylation site that, in the neuronal isoform, acts as a master control for "convergent" regulation by PKC and cAMP-dependent protein kinase. It lacks an approximately 200-aa segment between domains I and II though to modulate channel gating. We here demonstrate that mu1 is regulated by PKC (but not cAMP-dependent protein kinase) in a manner distinct from that observed for the neuronal isoforms, suggesting that under the same conditions muscle excitation could be uncoupled from motor neuron input. Maximal phosphorylation by PKC, in the presence of phosphatase inhibitors, reduced peak Na+ currents by approximately 90% by decreasing the maximal conductance, caused a -15 mV shift in the midpoint of steady-state inactivation, and caused a slight speeding of inactivation. Surprisingly, these effects were not affected by mutation of the conserved serine (serine-1321) in the interdomain III-IV loop. the pattern of current suppression and gating modification by PKC resembles the response of muscle Na+ channels to inhibitory factors present in the serum and cerebrospinal fluid of patients with Guillain-Barré syndrome, multiple sclerosis, and idiopathic demyelinating polyradiculoneuritis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the modifications of cytosolic [Ca2+] and the activity of Ca2+ channels in freshly dispersed arterial myocytes to test whether lowering O2 tension (PO2) directly influences Ca2+ homeostasis in these cells. Unclamped cells loaded with fura-2 AM exhibit oscillations of cytosolic Ca2+ whose frequency depends on extracellular Ca2+ influx. Switching from a PO2 of 150 to 20 mmHg leads to a reversible attenuation of the Ca2+ oscillations. In voltage-clamped cells, hypoxia reversibly reduces the influx of Ca2+ through voltage-dependent channels, which can account for the inhibition of the Ca2+ oscillations. Low PO2 selectively inhibits L-type Ca2+ channel activity, whereas the current mediated by T-type channels is unaltered by hypoxia. The effect of low PO2 on the L-type channels is markedly voltage dependent, being more apparent with moderate depolarizations. These findings demonstrate the existence of O2-sensitive, voltage-dependent, Ca2+ channels in vascular smooth muscle that may critically contribute to the local regulation of circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective-We previously demonstrated that upregulation of intermediate-conductance Ca2+ -activated K+ channels (KCa 3.1) is necessary for mitogen-induced phenotypic modulation in isolated porcine coronary smooth muscle cells (SMCs). The objective of the present study was to determine the role of KCa3.1 in the regulation of coronary SMC phenotypic modulation in vivo using a swine model of postangioplasty restenosis. Methods and Results-Balloon angioplasty was performed on coronary arteries of swine using either noncoated or balloons coated with the specific KCa3.1 blocker TRAM-34. Expression of KCa3.1, c-jun, c-fos, repressor element-1 silencing transcription factor (REST), smooth muscle myosin heavy chain (SMMHC), and myocardin was measured using qRT-PCR in isolated medial cells 2 hours and 2 days postangioplasty. KCa3.1, c-jun, and c-fos mRNA levels were increased 2 hours postangioplasty, whereas REST expression decreased. SMMHC expression was unchanged at 2 hours, but decreased 2 days postangioplasty. Use of TRAM-34 coated balloons prevented KCa3.1 upregulation and REST downregulation at 2 hours, SMMHC and myocardin downregulation at 2 days, and attenuated subsequent restenosis 14 and 28 days postangioplasty. Immunohistochemical analysis demonstrated corresponding changes at the protein level. Conclusion-Blockade of KCa3.1 by delivery of TRAM-34 via balloon catheter prevented smooth muscle phenotypic modulation and limited subsequent restenosis. © 2008 American Heart Association, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The V˙O2 slow component (V˙O2sc) that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre-fatigue condition) or rest for 33 min (control condition) according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-s maximal sprints at a fixed pedaling cadence of 90 rev·min−1. Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE) were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and V˙O2max determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue (P = 0.03), the V˙O2sc was not significantly different between the pre-fatigue (464 ± 301 mL·min−1) and the control (556 ± 223 mL·min−1) condition (P = 0.50). Blood lactate response was not significantly different between conditions (P = 0.48) but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition (P < 0.01) suggesting higher muscle recruitment. These results demonstrate experimentally that locomotor muscle fatigue does not significantly alter the V˙O2 kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the V˙O2sc is strongly associated with locomotor muscle fatigue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective- This study investigated whether differences exist in atherogen-induced migratory behaviors and basal antioxidant enzyme capacity of vascular smooth muscle cells (VSMC) from human coronary (CA) and internal mammary (IMA) arteries. Methods- Migration experiments were performed using the Dunn chemotaxis chamber. The prooxidant [NAD(P)H oxidase] and antioxidant [NOS, superoxide dismutase, catalase and glutathione peroxidase] enzyme activities were determined by specific assays. Results- Chemotaxis experiments revealed that while both sets of VSMC migrated towards platelet-derived growth factor-BB (1-50 ng/ml) and angiotensin II (1-50 nM), neither oxidized-LDL (ox-LDL, 25-100 �g/ml) nor native LDL (100 �g/ml) affected chemotaxis in IMA VSMC. However, high dose ox-LDL produced significant chemotaxis in CA VSMC that was inhibited by pravastatin (100 nM), mevastatin (10 nM), losartan (10 nM), enalapril (1 �M), and MnTBAP (a free radical scavenger, 50��M). Microinjection experiments with isoprenoids i.e. geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) showed distinct involvement of small GTPases in atherogen-induced VSMC migration. Significant increases in antioxidant enzyme activities and nitrite production along with marked decreases in NAD(P)H oxidase activity and O2 .- levels were determined in IMA versus CA VSMC. Conclusions- Enhanced intrinsic antioxidant capacity may confer on IMA VSMC resistance to migration against atherogenic agents. Drugs that regulate ox-LDL or angiotensin II levels also exert antimigratory effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the electrical and mechanical responses to inhibitory non-adrenergic noncholinergic (NANC) nerve stimulation in the bovine retractor penis muscle (BRP) and compare them with those to an inhibitory extract made from this muscle. The extract may contain the NANC inhibitory transmitter of the BRP and possibly of other smooth muscles. Because of species differences in the electrical response to NANC nerves in the rat and rabbit anococcygeus the effects of the extract on these tissues was also investigated. Prior to the investigation of the extract, both the excitatory and inhibitory responses to field stimulation in the BRP, and the effects of passive membrane potential displacement were studied using conventional intra- or extracellular (sucrose gap) recording techniques. The majority of cells in the BRP were electrically quiescent independent of the resting tone. The most frequent (in approximately 25% of preparations) form of spontaneous activity, oscillations in membrane potential and tone, may represent a pacemaker activity. The BRP had cable properties; the time constant and space constant indicated a high membrane resistance. In the absence of tone, field stimulation of the BRP evoked excitatory junction potentials (ejps) in every cell impaled and contractions, graded with the strength, frequency and number of pulses; spikes were not observed. Guanethidine (1-3 x 10-5M) abolished the ejps and contractions, confirming their adrenergic origin. Noradrenaline added exogenously depolarised and contracted the muscle. These effects were blocked by the a-adrenoceptor antagonists, phentolamine and prazosin. However, phentolamine (2.5x 10-6M) inhibited the contraction without reducing the ejp significantly. These effects may be independent of adrenoceptor blockade or the ejp may be mediated by a substance other than noradrenaline (e.g. ATP) released from adrenergic nerves. Prazosin (1.4 x lO-6M) failed to block either the ejp or contraction, indicating the possible existence of two types of adrenoceptor in the BRP; one activated by neuronally-released and the other by exogenously-added noradrenaline. ATP, a contaminant in the extract, also depolarised and contracted the BRP. Physostigmine reduced whilst atropine enhanced the ejps and contractions without similarly affecting the response to exogenous noradrenaline. This confirmed the presence of a cholinergic inhibitory innervation acting on the excitatory adrenergic fibres (Klinge and Sjostrand, 1977). TEA (1 x lO-4M) enhanced the ejp and contraction. Higher concentrations (0.5 to 10 x 10-3M) depolarised, increased the tone and evoked electrical and mechanical oscillations but no spikes. The depolarisation and contraction to exogenous noradrenaline were not enhanced, indicating that TEA acts on the adrenergic nerves. Some post-synaptic effect to block K+ channels also seems likely. The relationship between ejp amplitude and membrane potential in the double sucrose gap was linear and indicated a reversal potential more positive than -30mV. Electrotonic pulse amplitude decreased during the ejp, indicating an increased membrane conductance. Ejps and contractions were reduced following the replacement of the NaCl of the Krebs solution with sodium glutamate. This may be due to the effects of glutamate itself (e.g. Ca2+ chelation) rather than reduction in the membrane Cl- gradient. Tone usually developed spontaneously and was accompanied by membrane depolarisation (from -53 to -45mV) which may open voltage-dependent channels, causing Ca2+ entry and/or its release from intracellular binding sites. Field stimulation produced inhibitory potentials (ijps) and relaxations graded with the strength and number of pulses but showing little frequency dependence. Rebound depolarisation and contraction often followed the ijp and relaxation. Tetrodotoxin (3 x IO-6M), but not adrenergic or cholinergic antagonists, abolished the ijp and relaxation, confirming their non-adrenergic non-cholinergic neurogenic nature. The extract, prepared and acid-activated as described by Gillespie, Hunter and Martin (1981), hyperpolarised and relaxed the BRP, as did sodium nitroprusside and adenosine triphosphate (ATP). Unlike the activated extract or sodium nitroprusside, desensitisation to ATP occurred rapidly and without any change in the inhibitory electrical or mechanical responses to field stimulation. The ijp and relaxation in the BRP were insensitive to apamin but abolished by oxyhaemoglobin (4-8 x 10-6M), as were the responses to extract and sodium nitroprusside. In TEA (10-2M), field stimulation evoked relaxations with no accompanying electrical change. The ijp may be unconnected with or additional to another mechanism producing relaxation. The relationship between membrane potential and ijp in the BRP was non-linear. Ijp amplitude was initially increased during membrane potential displacement from -45mV to approximately -60mV. Thereafter (-60 to -l03mV) the ijp was reduced. Ijps were abolished at -27 and -103mV; reversal was not observed. The hyperpolarisation to extract was also enhanced during passive displacement of the membrane potential to more negative values (-57mV). Membrane resistance increased during the ijp. The extract produced inconsistent changes in membrane resistance, possibly because of the presence of more than one active component. K+ withdrawal failed to enhance the ijp or hyperpolarisation to extract and 20mM K+ did not abolish the the ijp at membrane potentials exceeding EK (-49mV). Thus, the ijp or hyperpolarisation to extract are unlikely to be mediated by an increased K+ conductance. Reducing the Cl- abolished the hyperpolarisation to field stimulation and extract. This occurred more quickly than the anticipated reduction in the Cl- gradient and may be due to Ca2+ chelation by the anion substitute (glutamate or benzenesulphonate) or blockade of the resting conductance which is normally inactivated by the transmitter. Ouabain (1-5x 10-5M), which reduces both the Na+ and Cl- gradients, abolished the ijp, implicating either of these ions as the ionic species involved. In the rat and rabbit anococcygeus, field stimulation and extract each reduced guanethidine-induced tone. This was unaccompanied in the majority of cells in the rat by any significant electrical response. In the remaining cells, inhibition of the membrane potential oscillations occurred. The rabbit anococcygeus differed in that inhibition of the electrical oscillations was observed in every cell exhibiting this behaviour. However, the majority of cells in the rabbit were electrically quiescent and showed only small hyperpolarisations to field stimulation and no electrical response to extract. Apamin (1 x 10-7M) failed to block the electrical and mechanical response to field stimulation in the rabbit but did inhibit transiently that to extract. The latter effect may be due to the initial excitatory effects of apamin. The similarities between the electrical effects of the extract and those of inhibitory nerve stimulation in the BRP, rat and rabbit anococcygeus muscles are generally consistent with their being mediated by the same active component. Moreover, the ijp in the BRP shows properties which have not been reported in other non-adrenergic noncholinergically innervated smooth muscles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ulva rigida (UR) and Palmaria palmata (PP) were included in farmed Atlantic salmon diets at levels of 0-15% for 19 and 16 weeks, respectively. Quality and shelf-life parameters of salmon fillets stored in modified atmosphere packs (MAP) (60% N2 : 40% CO2) at 4ºC were compared to controls fed astaxanthin. Salmon fillets were enhanced with a yellow/orange colour. Proximate composition, pH and lipid oxidation were unaffected by dietary UR and PP. Salmon fed 5% UR and 5-15% PP did not influence sensory descriptors (texture, odour, oxidation flavour and overall acceptability) of cooked salmon fillets. Pig diets were supplemented with commercial wet- and spray-dried macroalgal (Laminaria digitata) polysaccharide extracts containing laminarin (L, 500 mg/kg feed) and fucoidan (F, 420 mg/kg feed) (L/F-WS, L/F-SD) for 3 weeks and quality and shelf-life parameters of fresh pork steaks (longissimus thoracis et lumborum) stored in MAP (80% O2 : 20% CO2) were examined. Level (450 or 900 mg L and F/kg feed) and duration (3 or 6 weeks) of dietary L/F-WS and mechanisms of antioxidant activities in pork were investigated. L/F-WS reduced (p < 0.05) lipid oxidation and lowered levels of saturated fatty acids in fresh pork after 3 weeks feeding. L/F-SD was added directly to mince pork (0.01 - 0.5%) and quality and shelf-life parameters of fresh pork patties stored in MAP (80% O2 : 20% CO2) were assessed. Direct addition of the L/F-SD increased levels of lipid oxidation and decreased surface redness (a* values) of fresh pork patties. Lipid oxidation was reduced in cooked patties due to the formation of Maillard reaction products. Cooked pork patties containing L/F-SD were subjected to an in vitro digestion and a cellular transwell model to confirm bioaccessibility and uptake of antioxidant compounds. In mechanistic studies, fucoidan demonstrated antiand pro-oxidant activities on muscle lipids and oxymyoglobin, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alterations to the supply of oxygen during early life presents a profound stressor to physiological systems with aberrant remodeling that is often long-lasting. Chronic intermittent hypoxia (CIH) is a feature of apnea of prematurity, chronic lung disease, and sleep apnea. CIH affects respiratory control but there is a dearth of information concerning the effects of CIH on respiratory muscles, including the diaphragm—the major pump muscle of breathing. We investigated the effects of exposure to gestational CIH (gCIH) and postnatal CIH (pCIH) on diaphragm muscle function in male and female rats. CIH consisted of exposure in environmental chambers to 90 s of hypoxia reaching 5% O2 at nadir, once every 5 min, 8 h a day. Exposure to gCIH started within 24 h of identification of a copulation plug and continued until day 20 of gestation; animals were studied on postnatal day 22 or 42. For pCIH, pups were born in normoxia and within 24 h of delivery were exposed with dams to CIH for 3 weeks; animals were studied on postnatal day 22 or 42. Sham groups were exposed to normoxia in parallel. Following gas exposures, diaphragm muscle contractile, and endurance properties were examined ex vivo. Neither gCIH nor pCIH exposure had effects on diaphragm muscle force-generating capacity or endurance in either sex. Similarly, early life exposure to CIH did not affect muscle tolerance of severe hypoxic stress determined ex vivo. The findings contrast with our recent observation of upper airway dilator muscle weakness following exposure to pCIH. Thus, the present study suggests a relative resilience to hypoxic stress in diaphragm muscle. Co-ordinated activity of thoracic pump and upper airway dilator muscles is required for optimal control of upper airway caliber. A mismatch in the force-generating capacity of the complementary muscle groups could have adverse consequences for the control of airway patency and respiratory homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic intermittent hypoxia (CIH) causes upper airway muscle dysfunction. We hypothesized that the superoxide generating NADPH oxidase (NOX) is upregulated in CIH-exposed muscle causing oxidative stress. Adult male Wistar rats were exposed to intermittent hypoxia (5% O2 at the nadir for 90 s followed by 210 s of normoxia), for 8 h per day for 14 days. The effect of CIH exposure on the expression of NOX subunits, total myosin and 4-hydroxynonenal (4-HNE) protein adducts in sternohyoid muscle was determined by western blotting and densitometry. Sternohyoid protein free thiol and carbonyl group contents were determined by 1D electrophoresis using specific fluorophore probes. Aconitase and glutathione reductase activities were measured as indices of oxidative stress. HIF-1α content and key oxidative and glycolytic enzyme activities were determined. Contractile properties of sternohyoid muscle were determined ex vivo in the absence and presence of apocynin (putative NOX inhibitor). We observed an increase in NOX 2 and p47 phox expression in CIH-exposed sternohyoid muscle with decreased aconitase and glutathione reductase activities. There was no evidence, however, of increased lipid peroxidation or protein oxidation in CIH-exposed muscle. CIH exposure did not affect sternohyoid HIF-1α content or aldolase, lactate dehydrogenase, or glyceraldehyde-3-phosphate dehydrogenase activities. Citrate synthase activity was also unaffected by CIH exposure. Apocynin significantly increased sternohyoid force and power. We conclude that CIH exposure upregulates NOX expression in rat sternohyoid muscle with concomitant modest oxidative stress but it does not result in a HIF-1α-dependent increase in glycolytic enzyme activity. Constitutive NOX activity decreases sternohyoid force and power. Our results implicate NOX-dependent reactive oxygen species in CIH-induced upper airway muscle dysfunction which likely relates to redox modulation of key regulatory proteins in excitation-contraction coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intermittent hypoxia is a feature of apnea of prematurity (AOP), chronic lung disease, and sleep apnea. Despite the clinical relevance, the long-term effects of hypoxic exposure in early life on respiratory control are not well defined. We recently reported that exposure to chronic intermittent hypoxia (CIH) during postnatal development (pCIH) causes upper airway muscle weakness in both sexes, which persists for several weeks. We sought to examine if there are persistent sex-dependent effects of pCIH on respiratory muscle function into adulthood and/or increased susceptibility to re-exposure to CIH in adulthood in animals previously exposed to CIH during postnatal development. We hypothesized that pCIH would cause long-lasting muscle impairment and increased susceptibility to subsequent hypoxia. Within 24 h of delivery, pups and their respective dams were exposed to CIH: 90 s of hypoxia reaching 5% O2 at nadir; once every 5 min, 8 h per day for 3 weeks. Sham groups were exposed to normoxia in parallel. Three groups were studied: sham; pCIH; and pCIH combined with adult CIH (p+aCIH), where a subset of the pCIH-exposed pups were re-exposed to the same CIH paradigm beginning at 13 weeks. Following gas exposures, sternohyoid and diaphragm muscle isometric contractile and endurance properties were examined ex vivo. There was no apparent lasting effect of pCIH on respiratory muscle function in adults. However, in both males and females, re-exposure to CIH in adulthood in pCIH-exposed animals caused sternohyoid (but not diaphragm) weakness. Exposure to this paradigm of CIH in adulthood alone had no effect on muscle function. Persistent susceptibility in pCIH-exposed airway dilator muscle to subsequent hypoxic insult may have implications for the control of airway patency in adult humans exposed to intermittent hypoxic stress during early life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sexual dysfunction (SD) affects up to 80% of multiple sclerosis (MS) patients and pelvic floor muscles (PFMs) play an important role in the sexual function of these patients. The objective of this paper is to evaluate the impact of a rehabilitation program to treat lower urinary tract symptoms on SD of women with MS. Thirty MS women were randomly allocated to one of three groups: pelvic floor muscle training (PFMT) with electromyographic (EMG) biofeedback and sham neuromuscular electrostimulation (NMES) (Group I), PFMT with EMG biofeedback and intravaginal NMES (Group II), and PFMT with EMG biofeedback and transcutaneous tibial nerve stimulation (TTNS) (Group III). Assessments, before and after the treatment, included: PFM function, PFM tone, flexibility of the vaginal opening and ability to relax the PFMs, and the Female Sexual Function Index (FSFI) questionnaire. After treatment, all groups showed improvements in all domains of the PERFECT scheme. PFM tone and flexibility of the vaginal opening was lower after the intervention only for Group II. All groups improved in arousal, lubrication, satisfaction and total score domains of the FSFI questionnaire. This study indicates that PFMT alone or in combination with intravaginal NMES or TTNS contributes to the improvement of SD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Muscle strength and functional independence are considered to be determinants of frailty levels among elderly people. The aim here was to compare lower-limb muscle strength (LLMS) with functional independence in relation to sex, age and number of frailty criteria, and to ascertain the influence of these variables on elderly outpatients' independence. Quantitative cross-sectional study, in a tertiary hospital. The study was conducted on 150 elderly outpatients of both sexes who were in a cognitive condition allowing oral communication, between October 2005 and October 2007. The following instruments were used: five-times sit-to-stand test (FTSST), Functional Independence Measurement (FIM) and Lawton's Instrumental Activities of Daily Living Scale (IADL). Descriptive, comparative, multivariate, univariate and Cronbach alpha analyses were performed. The mean time taken in the FTSST was 21.7 seconds; the mean score for FIM was 82.2 and for IADL was 21.2; 44.7% of the subjects presented 1-2 frailty criteria and 55.3% > 3 criteria. There was a significant association between LLMS and functional independence in relation to the number of frailty criteria, without homogeneity regarding sex and age. Functional independence showed significant influence from sex and LLMS. Elderly individuals with 1 or 2 frailty criteria presented greater independence in all FTSST scores. The subjects with higher LLMS presented better functional independence.