963 resultados para Multivariate Normal Distribution
Resumo:
Principal curves have been defined Hastie and Stuetzle (JASA, 1989) assmooth curves passing through the middle of a multidimensional dataset. They are nonlinear generalizations of the first principalcomponent, a characterization of which is the basis for the principalcurves definition.In this paper we propose an alternative approach based on a differentproperty of principal components. Consider a point in the space wherea multivariate normal is defined and, for each hyperplane containingthat point, compute the total variance of the normal distributionconditioned to belong to that hyperplane. Choose now the hyperplaneminimizing this conditional total variance and look for thecorresponding conditional mean. The first principal component of theoriginal distribution passes by this conditional mean and it isorthogonal to that hyperplane. This property is easily generalized todata sets with nonlinear structure. Repeating the search from differentstarting points, many points analogous to conditional means are found.We call them principal oriented points. When a one-dimensional curveruns the set of these special points it is called principal curve oforiented points. Successive principal curves are recursively definedfrom a generalization of the total variance.
Resumo:
In this paper we describe the results of a simulation study performed to elucidate the robustness of the Lindstrom and Bates (1990) approximation method under non-normality of the residuals, under different situations. Concerning the fixed effects, the observed coverage probabilities and the true bias and mean square error values, show that some aspects of this inferential approach are not completely reliable. When the true distribution of the residuals is asymmetrical, the true coverage is markedly lower than the nominal one. The best results are obtained for the skew normal distribution, and not for the normal distribution. On the other hand, the results are partially reversed concerning the random effects. Soybean genotypes data are used to illustrate the methods and to motivate the simulation scenarios
Resumo:
The modeling and estimation of the parameters that define the spatial dependence structure of a regionalized variable by geostatistical methods are fundamental, since these parameters, underlying the kriging of unsampled points, allow the construction of thematic maps. One or more atypical observations in the sample data can affect the estimation of these parameters. Thus, the assessment of the combined influence of these observations by the analysis of Local Influence is essential. The purpose of this paper was to propose local influence analysis methods for the regionalized variable, given that it has n-variate Student's t-distribution, and compare it with the analysis of local influence when the same regionalized variable has n-variate normal distribution. These local influence analysis methods were applied to soil physical properties and soybean yield data of an experiment carried out in a 56.68 ha commercial field in western Paraná, Brazil. Results showed that influential values are efficiently determined with n-variate Student's t-distribution.
Resumo:
The dynamics of N losses in fertilizer by ammonia volatilization is affected by several factors, making investigation of these dynamics more complex. Moreover, some features of the behavior of the variable can lead to deviation from normal distribution, making the main commonly adopted statistical strategies inadequate for data analysis. Thus, the purpose of this study was to evaluate the patterns of cumulative N losses from urea through ammonia volatilization in order to find a more adequate and detailed way of assessing the behavior of the variable. For that reason, changes in patterns of ammonia volatilization losses as a result of applying different combinations of two soil classes [Planossolo and Chernossolo (Typic Albaqualf and Vertic Argiaquolls)] and different rates of urea (50, 100 and 150 kg ha-1 N), in the presence or absence of a urease inhibitor, were evaluated, adopting a 2 × 3 × 2 factorial design with four replications. Univariate and multivariate analysis of variance were performed using the adjusted parameter values of a logistic function as a response variable. The results obtained from multivariate analysis indicated a prominent effect of the soil class factor on the set of parameters, indicating greater relevance of soil adsorption potential on ammonia volatilization losses. Univariate analysis showed that the parameters related to total N losses and rate of volatilization were more affected by soil class and the rate of urea applied. The urease inhibitor affected only the rate and inflection point parameters, decreasing the rate of losses and delaying the beginning of the process, but had no effect on total ammonia losses. Patterns of ammonia volatilization losses provide details on behavior of the variable, details which can be used to develop and adopt more accurate techniques for more efficient use of urea.
Resumo:
We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multichannel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an evaluation framework that contains three different experiments on multi-site data. We first validate the accuracy of segmentation and the estimated bias field for each channel. MBIS outperforms a widely used segmentation tool in a cross-comparison evaluation. The second experiment demonstrates the robustness of results on atlas-free segmentation of two image sets from scan-rescan protocols on 21 healthy subjects. Multivariate segmentation is more replicable than the monospectral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate how MBIS can be used in a large-scale study of tissue volume change with increasing age in 584 healthy subjects. This last result is meaningful as multivariate segmentation performs robustly without the need for prior knowledge.
Resumo:
A prospective study of IgG and IgM isotypes of anticardiolipin antibodies (aCL) in a series of 100 patients with systemic lupus erythematosus was carried out. To determine the normal range of both isotype titres a group of 100 normal control serum samples was studied and a log-normal distribution of IgG and IgM isotypes was found. The IgG anticardiolipin antibody serum was regarded as positive if a binding index greater than 2.85 (SD 3.77) was detected and a binding index greater than 4.07 (3.90) was defined as positive for IgM anticardiolipin antibody. Twenty four patients were positive for IgG aCL, 20 for IgM aCL, and 36 for IgG or IgM aCL, or both. IgG aCL were found to have a significant association with thrombosis and thrombocytopenia, and IgM aCL with haemolytic anaemia and neutropenia. Specificity and predictive value for these clinical manifestations increased at moderate and high anticardiolipin antibody titres. In addition, a significant association was found between aCL and the presence of lupus anticoagulant. Identification of these differences in the anticardiolipin antibody isotype associations may improve the clinical usefulness of these tests, and this study confirms the good specificity and predictive value of the anticardiolipin antibody titre for these clinical manifestations.
Resumo:
Student’s t-distribution has found various applications in mathematical statistics. One of the main properties of the t-distribution is to converge to the normal distribution as the number of samples tends to infinity. In this paper, by using a Cauchy integral we introduce a generalization of the t-distribution function with four free parameters and show that it converges to the normal distribution again. We provide a comprehensive treatment of mathematical properties of this new distribution. Moreover, since the Fisher F-distribution has a close relationship with the t-distribution, we also introduce a generalization of the F-distribution and prove that it converges to the chi-square distribution as the number of samples tends to infinity. Finally some particular sub-cases of these distributions are considered.
Resumo:
In a seminal paper, Aitchison and Lauder (1985) introduced classical kernel density estimation techniques in the context of compositional data analysis. Indeed, they gave two options for the choice of the kernel to be used in the kernel estimator. One of these kernels is based on the use the alr transformation on the simplex SD jointly with the normal distribution on RD-1. However, these authors themselves recognized that this method has some deficiencies. A method for overcoming these dificulties based on recent developments for compositional data analysis and multivariate kernel estimation theory, combining the ilr transformation with the use of the normal density with a full bandwidth matrix, was recently proposed in Martín-Fernández, Chacón and Mateu- Figueras (2006). Here we present an extensive simulation study that compares both methods in practice, thus exploring the finite-sample behaviour of both estimators
Resumo:
En este trabajo se realiza la medición del riesgo de mercado para el portafolio de TES de un banco colombiano determinado, abordando el pronóstico de valor en riesgo (VaR) mediante diferentes modelos multivariados de volatilidad: EWMA, GARCH ortogonal, GARCH robusto, así como distintos modelos de VaR con distribución normal y distribución t-student, evaluando su eficiencia con las metodologías de backtesting propuestas por Candelon et al. (2011) con base en el método generalizado de momentos, junto con los test de independencia y de cobertura condicional planteados por Christoffersen y Pelletier (2004) y por Berkowitz, Christoffersen y Pelletier (2010). Los resultados obtenidos demuestran que la mejor especificación del VaR para la medición del riesgo de mercado del portafolio de TES de los bancos colombianos, es el construido a partir de volatilidades EWMA y basado en la distribución normal, ya que satisface las hipótesis de cobertura no condicional, independencia y cobertura condicional, al igual que los requerimientos estipulados en Basilea II y en la normativa vigente en Colombia.
Resumo:
This paper explores a new technique to calculate and plot the distribution of instantaneous transmit envelope power of OFDMA and SC-FDMA signals from the equation of Probability Density Function (PDF) solved numerically. The Complementary Cumulative Distribution Function (CCDF) of Instantaneous Power to Average Power Ratio (IPAPR) is computed from the structure of the transmit system matrix. This helps intuitively understand the distribution of output signal power if the structure of the transmit system matrix and the constellation used are known. The distribution obtained for OFDMA signal matches complex normal distribution. The results indicate why the CCDF of IPAPR in case of SC-FDMA is better than OFDMA for a given constellation. Finally, with this method it is shown again that cyclic prefixed DS-CDMA system is one case with optimum IPAPR. The insight that this technique provides may be useful in designing area optimised digital and power efficient analogue modules.
Resumo:
In this paper we have discussed inference aspects of the skew-normal nonlinear regression models following both, a classical and Bayesian approach, extending the usual normal nonlinear regression models. The univariate skew-normal distribution that will be used in this work was introduced by Sahu et al. (Can J Stat 29:129-150, 2003), which is attractive because estimation of the skewness parameter does not present the same degree of difficulty as in the case with Azzalini (Scand J Stat 12:171-178, 1985) one and, moreover, it allows easy implementation of the EM-algorithm. As illustration of the proposed methodology, we consider a data set previously analyzed in the literature under normality.
Resumo:
Linear mixed models were developed to handle clustered data and have been a topic of increasing interest in statistics for the past 50 years. Generally. the normality (or symmetry) of the random effects is a common assumption in linear mixed models but it may, sometimes, be unrealistic, obscuring important features of among-subjects variation. In this article, we utilize skew-normal/independent distributions as a tool for robust modeling of linear mixed models under a Bayesian paradigm. The skew-normal/independent distributions is an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal distribution, skew-t, skew-slash and the skew-contaminated normal distributions as special cases, providing an appealing robust alternative to the routine use of symmetric distributions in this type of models. The methods developed are illustrated using a real data set from Framingham cholesterol study. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The generalized Birnbaum-Saunders distribution pertains to a class of lifetime models including both lighter and heavier tailed distributions. This model adapts well to lifetime data, even when outliers exist, and has other good theoretical properties and application perspectives. However, statistical inference tools may not exist in closed form for this model. Hence, simulation and numerical studies are needed, which require a random number generator. Three different ways to generate observations from this model are considered here. These generators are compared by utilizing a goodness-of-fit procedure as well as their effectiveness in predicting the true parameter values by using Monte Carlo simulations. This goodness-of-fit procedure may also be used as an estimation method. The quality of this estimation method is studied here. Finally, through a real data set, the generalized and classical Birnbaum-Saunders models are compared by using this estimation method.
Resumo:
In this article, we discuss inferential aspects of the measurement error regression models with null intercepts when the unknown quantity x (latent variable) follows a skew normal distribution. We examine first the maximum-likelihood approach to estimation via the EM algorithm by exploring statistical properties of the model considered. Then, the marginal likelihood, the score function and the observed information matrix of the observed quantities are presented allowing direct inference implementation. In order to discuss some diagnostics techniques in this type of models, we derive the appropriate matrices to assessing the local influence on the parameter estimates under different perturbation schemes. The results and methods developed in this paper are illustrated considering part of a real data set used by Hadgu and Koch [1999, Application of generalized estimating equations to a dental randomized clinical trial. Journal of Biopharmaceutical Statistics, 9, 161-178].
Resumo:
Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is interest in studying latent variables. These latent variables are directly considered in the Item Response Models (IRM) and they are usually called latent traits. A usual assumption for parameter estimation of the IRM, considering one group of examinees, is to assume that the latent traits are random variables which follow a standard normal distribution. However, many works suggest that this assumption does not apply in many cases. Furthermore, when this assumption does not hold, the parameter estimates tend to be biased and misleading inference can be obtained. Therefore, it is important to model the distribution of the latent traits properly. In this paper we present an alternative latent traits modeling based on the so-called skew-normal distribution; see Genton (2004). We used the centred parameterization, which was proposed by Azzalini (1985). This approach ensures the model identifiability as pointed out by Azevedo et al. (2009b). Also, a Metropolis Hastings within Gibbs sampling (MHWGS) algorithm was built for parameter estimation by using an augmented data approach. A simulation study was performed in order to assess the parameter recovery in the proposed model and the estimation method, and the effect of the asymmetry level of the latent traits distribution on the parameter estimation. Also, a comparison of our approach with other estimation methods (which consider the assumption of symmetric normality for the latent traits distribution) was considered. The results indicated that our proposed algorithm recovers properly all parameters. Specifically, the greater the asymmetry level, the better the performance of our approach compared with other approaches, mainly in the presence of small sample sizes (number of examinees). Furthermore, we analyzed a real data set which presents indication of asymmetry concerning the latent traits distribution. The results obtained by using our approach confirmed the presence of strong negative asymmetry of the latent traits distribution. (C) 2010 Elsevier B.V. All rights reserved.