885 resultados para Multiple-model filter


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work introduced the novel conception of complex coupled hybrid VCSELs for the first time. Alternating organic and inorganic layers in the lasers provide periodic variation of refractive index and optical gain, which enable single mode operation and low threshold of the VCSELs. Model calculations revealed great reduction of the lasing threshold with factors over 30, in comparison with the existing micro-cavity lasers. Tunable green VCSEL has been also designed, implemented and analyzed taking advantage of the broad photoluminescence spectra of the organics. Free standing optical thin films without compressive stress are technologically implemented. Multiple membrane stacks with air gap in between have been fabricated for the implementation of complex coupled VCSEL structures. Complex coupled hybrid VCSEL is a very promising approach to fill the gaps in the green spectral range of the semiconductor lasers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This Working Document by Daniel Gros presents a simple model that incorporates two types of sovereign default cost: first, a lump-sum cost due to the fact that the country does not service its debt fully and is recognised as being in default status, by ratings agencies, for example. Second, a cost that increases with the size of the losses (or haircut) imposed on creditors whose resistance to a haircut increases with the proportional loss inflicted upon them. One immediate implication of the model is that under some circumstances the creditors have a (collective) interest to forgive some debt in order to induce the country not to default. The model exhibits a potential for multiple equilibria, given that a higher interest rate charged by investors increases the debt service burden and thus the temptation to default. Under very high debt levels credit rationing can set in as the feedback loop between higher interest rates and the higher incentive to default can become explosive. The introduction of uncertainty makes multiple equilibria less likely and reduces their range.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A driver controls a car by turning the steering wheel or by pressing on the accelerator or the brake. These actions are modelled by Gaussian processes, leading to a stochastic model for the motion of the car. The stochastic model is the basis of a new filter for tracking and predicting the motion of the car, using measurements obtained by fitting a rigid 3D model to a monocular sequence of video images. Experiments show that the filter easily outperforms traditional filters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MOTIVATION: The accurate prediction of the quality of 3D models is a key component of successful protein tertiary structure prediction methods. Currently, clustering or consensus based Model Quality Assessment Programs (MQAPs) are the most accurate methods for predicting 3D model quality; however they are often CPU intensive as they carry out multiple structural alignments in order to compare numerous models. In this study, we describe ModFOLDclustQ - a novel MQAP that compares 3D models of proteins without the need for CPU intensive structural alignments by utilising the Q measure for model comparisons. The ModFOLDclustQ method is benchmarked against the top established methods in terms of both accuracy and speed. In addition, the ModFOLDclustQ scores are combined with those from our older ModFOLDclust method to form a new method, ModFOLDclust2, that aims to provide increased prediction accuracy with negligible computational overhead. RESULTS: The ModFOLDclustQ method is competitive with leading clustering based MQAPs for the prediction of global model quality, yet it is up to 150 times faster than the previous version of the ModFOLDclust method at comparing models of small proteins (<60 residues) and over 5 times faster at comparing models of large proteins (>800 residues). Furthermore, a significant improvement in accuracy can be gained over the previous clustering based MQAPs by combining the scores from ModFOLDclustQ and ModFOLDclust to form the new ModFOLDclust2 method, with little impact on the overall time taken for each prediction. AVAILABILITY: The ModFOLDclustQ and ModFOLDclust2 methods are available to download from: http://www.reading.ac.uk/bioinf/downloads/ CONTACT: l.j.mcguffin@reading.ac.uk.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Selecting the highest quality 3D model of a protein structure from a number of alternatives remains an important challenge in the field of structural bioinformatics. Many Model Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single energy score based on a single model, to methods which rely on structural comparisons of multiple models or additional information from meta-servers. However, it is clear that no current method can separate the highest accuracy models from the lowest consistently. In this paper, a number of the top performing MQAP methods are benchmarked in the context of the potential value that they add to protein fold recognition. Two novel methods are also described: ModSSEA, which based on the alignment of predicted secondary structure elements and ModFOLD which combines several true MQAP methods using an artificial neural network. Results: The ModSSEA method is found to be an effective model quality assessment program for ranking multiple models from many servers, however further accuracy can be gained by using the consensus approach of ModFOLD. The ModFOLD method is shown to significantly outperform the true MQAPs tested and is competitive with methods which make use of clustering or additional information from multiple servers. Several of the true MQAPs are also shown to add value to most individual fold recognition servers by improving model selection, when applied as a post filter in order to re-rank models. Conclusion: MQAPs should be benchmarked appropriately for the practical context in which they are intended to be used. Clustering based methods are the top performing MQAPs where many models are available from many servers; however, they often do not add value to individual fold recognition servers when limited models are available. Conversely, the true MQAP methods tested can often be used as effective post filters for re-ranking few models from individual fold recognition servers and further improvements can be achieved using a consensus of these methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a recent study, Williams introduced a simple modification to the widely used Robert–Asselin (RA) filter for numerical integration. The main purpose of the Robert–Asselin–Williams (RAW) filter is to avoid the undesired numerical damping of the RA filter and to increase the accuracy. In the present paper, the effects of the modification are comprehensively evaluated in the Simplified Parameterizations, Primitive Equation Dynamics (SPEEDY) atmospheric general circulation model. First, the authors search for significant changes in the monthly climatology due to the introduction of the new filter. After testing both at the local level and at the field level, no significant changes are found, which is advantageous in the sense that the new scheme does not require a retuning of the parameterized model physics. Second, the authors examine whether the new filter improves the skill of short- and medium-term forecasts. January 1982 data from the NCEP–NCAR reanalysis are used to evaluate the forecast skill. Improvements are found in all the model variables (except the relative humidity, which is hardly changed). The improvements increase with lead time and are especially evident in medium-range forecasts (96–144 h). For example, in tropical surface pressure predictions, 5-day forecasts made using the RAW filter have approximately the same skill as 4-day forecasts made using the RA filter. The results of this work are encouraging for the implementation of the RAW filter in other models currently using the RA filter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proponents of the “fast and frugal” approach to decision-making suggest that inferential judgments are best made on the basis of limited information. For example, if only one of two cities is recognized and the task is to judge which city has the larger population, the recognition heuristic states that the recognized city should be selected. In preference choices with >2 options, it is also standard to assume that a “consideration set”, based upon some simple criterion, is established to reduce the options available. A multinomial processing tree model is outlined which provides the basis for estimating the extent to which recognition is used as a criterion in establishing a consideration set for inferential judgments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motivation: Modelling the 3D structures of proteins can often be enhanced if more than one fold template is used during the modelling process. However, in many cases, this may also result in poorer model quality for a given target or alignment method. There is a need for modelling protocols that can both consistently and significantly improve 3D models and provide an indication of when models might not benefit from the use of multiple target-template alignments. Here, we investigate the use of both global and local model quality prediction scores produced by ModFOLDclust2, to improve the selection of target-template alignments for the construction of multiple-template models. Additionally, we evaluate clustering the resulting population of multi- and single-template models for the improvement of our IntFOLD-TS tertiary structure prediction method. Results: We find that using accurate local model quality scores to guide alignment selection is the most consistent way to significantly improve models for each of the sequence to structure alignment methods tested. In addition, using accurate global model quality for re-ranking alignments, prior to selection, further improves the majority of multi-template modelling methods tested. Furthermore, subsequent clustering of the resulting population of multiple-template models significantly improves the quality of selected models compared with the previous version of our tertiary structure prediction method, IntFOLD-TS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The traditional economic approach for appraising the costs and benefits of construction project Net Present Values involves the calculation of net returns for each investment option under different discount rates. An alternative approach consists of multiple-project discount rates based on risk modelling. The example of a portfolio of microgeneration renewable energy technology (MRET) is presented to demonstrate that risks and future available budget for re-investment can be taken into account when setting discount rates for construction project specifications in presence of uncertainty. A formal demonstration is carried out through a reversed intertemporal approach of applied general equilibrium. It is demonstrated that risk and the estimated available budget for future re-investment can be included in the simultaneous assessment of the costs and benefits of multiple projects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn’t represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has long been supposed that preference judgments between sets of to-be-considered possibilities are made by means of initially winnowing down the most promising-looking alternatives to form smaller “consideration sets” (Howard, 1963; Wright & Barbour, 1977). In preference choices with >2 options, it is standard to assume that a “consideration set”, based upon some simple criterion, is established to reduce the options available. Inferential judgments, in contrast, have more frequently been investigated in situations in which only two possibilities need to be considered (e.g., which of these two cities is the larger?) Proponents of the “fast and frugal” approach to decision-making suggest that such judgments are also made on the basis of limited, simple criteria. For example, if only one of two cities is recognized and the task is to judge which city has the larger population, the recognition heuristic states that the recognized city should be selected. A multinomial processing tree model is outlined which provides the basis for estimating the extent to which recognition is used as a criterion in establishing a consideration set for inferential judgments between three possible options.