744 resultados para Multiple-criteria decision-making
Resumo:
Logistics distribution network design is one of the major decision problems arising in contemporary supply chain management. The decision involves many quantitative and qualitative factors that may be conflicting in nature. This paper applies an integrated multiple criteria decision making approach to design an optimal distribution network. In the approach, the analytic hierarchy process (AHP) is used first to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, the goal programming (GP) model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. In this paper, two commercial packages are used: Expert Choice for determining the AHP priorities of the warehouses, and LINDO for solving the GP model. © 2007 IEEE.
Resumo:
This paper develops and applies an integrated multiple criteria decision making approach to optimize the facility location-allocation problem in the contemporary customer-driven supply chain. Unlike the traditional optimization techniques, the proposed approach, combining the analytic hierarchy process (AHP) and the goal programming (GP) model, considers both quantitative and qualitative factors, and also aims at maximizing the benefits of deliverer and customers. In the integrated approach, the AHP is used first to determine the relative importance weightings or priorities of alternative locations with respect to both deliverer oriented and customer oriented criteria. Then, the GP model, incorporating the constraints of system, resource, and AHP priority is formulated to select the best locations for setting up the warehouses without exceeding the limited available resources. In this paper, a real case study is used to demonstrate how the integrated approach can be applied to deal with the facility location-allocation problem, and it is proved that the integrated approach outperforms the traditional costbased approach.
Resumo:
Using a wide range of operational research (OR) optimization examples, Applied Operational Research with SAS demonstrates how the OR procedures in SAS work. The book is one of the first to extensively cover the application of SAS procedures to OR problems, such as single criterion optimization, project management decisions, printed circuit board assembly, and multiple criteria decision making. The text begins with the algorithms and methods for linear programming, integer linear programming, and goal programming models. It then describes the principles of several OR procedures in SAS. Subsequent chapters explain how to use these procedures to solve various types of OR problems. Each of these chapters describes the concept of an OR problem, presents an example of the problem, and discusses the specific procedure and its macros for the optimal solution of the problem. The macros include data handling, model building, and report writing. While primarily designed for SAS users in OR and marketing analytics, the book can also be used by readers interested in mathematical modeling techniques. By formulating the OR problems as mathematical models, the authors show how SAS can solve a variety of optimization problems.
Resumo:
Projects exposed to an uncertain environment must be adapted to deal with the effective integration of various planning elements and the optimization of project parameters. Time, cost, and quality are the prime objectives of a project that need to be optimized to fulfill the owner's goal. In an uncertain environment, there exist many other conflicting objectives that may also need to be optimized. These objectives are characterized by varying degrees of conflict. Moreover, an uncertain environment also causes several changes in the project plan throughout its life, demanding that the project plan be totally flexible. Goal programming (GP), a multiple criteria decision making technique, offers a good solution for this project planning problem. There the planning problem is considered from the owner's perspective, which leads to classifying the project up to the activity level. GP is applied separately at each level, and the formulated models are integrated through information flow. The flexibility and adaptability of the models lies in the ease of updating the model parameters at the required level through changing priorities and/or constraints and transmitting the information to other levels. The hierarchical model automatically provides integration among various element of planning. The proposed methodology is applied in this paper to plan a petroleum pipeline construction project, and its effectiveness is demonstrated.
Resumo:
A cross-country pipeline construction project is exposed to an uncertain environment due to its enormous size (physical, manpower requirement and financial value), complexity in design technology and involvement of external factors. These uncertainties can lead to several changes in project scope during the process of project execution. Unless the changes are properly controlled, the time, cost and quality goals of the project may never be achieved. A methodology is proposed for project control through risk analysis, contingency allocation and hierarchical planning models. Risk analysis is carried out through the analytic hierarchy process (AHP) due to the subjective nature of risks in construction projects. The results of risk analysis are used to determine the logical contingency for project control with the application of probability theory. Ultimate project control is carried out by hierarchical planning model which enables decision makers to take vital decisions during the changing environment of the construction period. Goal programming (GP), a multiple criteria decision-making technique, is proposed for model formulation because of its flexibility and priority-base structure. The project is planned hierarchically in three levels—project, work package and activity. GP is applied separately at each level. Decision variables of each model are different planning parameters of the project. In this study, models are formulated from the owner's perspective and its effectiveness in project control is demonstrated.
Resumo:
The reasonable choice is a critical success factor for decision- making in the field of software engineering (SE). A case-driven comparative analysis has been introduced and a procedure for its systematic application has been suggested. The paper describes how the proposed method can be built in a general framework for SE activities. Some examples of experimental versions of the framework are brie y presented.
Resumo:
A model of multiple criteria decision making is presented for selecting the “best” of a finite number of alternatives. Techniques of scoring the alternatives and weighting the criteria are combined with different evaluating procedures and amalgamated in an interactive algorithm. Application of this method for choosing the best tender in a competitive bidding is discussed and a case is presented in some detail.
Resumo:
The study shows an alternative solution to existing efforts at solving the problem of how to centrally manage and synchronise users’ Multiple Profiles (MP) across multiple discrete social networks. Most social network users hold more than one social network account and utilise them in different ways depending on the digital context (Iannella, 2009a). They may, for example, enjoy friendly chat on Facebook1, professional discussion on LinkedIn2, and health information exchange on PatientsLikeMe3 In this thesis the researcher proposes a framework for the management of a user’s multiple online social network profiles. A demonstrator, called Multiple Profile Manager (MPM), will be showcased to illustrate how effective the framework will be. The MPM will achieve the required profile management and synchronisation using a free, open, decentralized social networking platform (OSW) that was proposed by the Vodafone Group in 2010. The proposed MPM will enable a user to create and manage an integrated profile (IP) and share/synchronise this profile with all their social networks. The necessary protocols to support the prototype are also proposed by the researcher. The MPM protocol specification defines an Extensible Messaging and Presence Protocol (XMPP) extension for sharing vCard and social network accounts information between the MPM Server, MPM Client, and social network sites (SNSs). . Therefore many web users need to manage disparate profiles across many distributed online sources. Maintaining these profiles is cumbersome, time-consuming, inefficient, and may lead to lost opportunity. The writer of this thesis adopted a research approach and a number of use cases for the implementation of the project. The use cases were created to capture the functional requirements of the MPM and to describe the interactions between users and the MPM. In the research a development process was followed in establishing the prototype and related protocols. The use cases were subsequently used to illustrate the prototype via the screenshots taken of the MPM client interfaces. The use cases also played a role in evaluating the outcomes of the research such as the framework, prototype, and the related protocols. An innovative application of this project is in the area of public health informatics. The researcher utilised the prototype to examine how the framework might benefit patients and physicians. The framework can greatly enhance health information management for patients and more importantly offer a more comprehensive personal health overview of patients to physicians. This will give a more complete picture of the patient’s background than is currently available and will prove helpful in providing the right treatment. The MPM prototype and related protocols have a high application value as they can be integrated into the real OSW platform and so serve users in the modern digital world. They also provide online users with a real platform for centrally storing their complete profile data, efficiently managing their personal information, and moreover, synchronising the overall complete profile with each of their discrete profiles stored in their different social network sites.
Resumo:
Systematic studies that evaluate the quality of decision-making processes are relatively rare. Using the literature on decision quality, this research develops a framework to assess the quality of decision-making processes for resolving boundary conflicts in the Philippines. The evaluation framework breaks down the decision-making process into three components (the decision procedure, the decision method, and the decision unit) and is applied to two ex-post (one resolved and one unresolved) and one ex-ante cases. The evaluation results from the resolved and the unresolved cases show that the choice of decision method plays a minor role in resolving boundary conflicts whereas the choice of decision procedure is more influential. In the end, a decision unit can choose a simple method to resolve the conflict. The ex-ante case presents a follow-up intended to resolve the unresolved case for a changing decision-making process in which the associated decision unit plans to apply the spatial multi criteria evaluation (SMCE) tool as a decision method. The evaluation results from the ex-ante case confirm that the SMCE has the potential to enhance the decision quality because: a) it provides high quality as a decision method in this changing process, and b) the weaknesses associated with the decision unit and the decision procedure of the unresolved case were found to be eliminated in this process.
Resumo:
Decision making at the front end of innovation is critical for the success of companies. This paper presents a method, called decision making based on knowledge (DeBK), which was created to analyze the decision-making process at the front end. The method evaluates the knowledge of project information and the importance of decision criteria, compiling a measure that indicates whether decisions are founded on available knowledge and what criteria are in fact being considered to delineate them. The potential contribution of DeBK is corroborated through two projects that faced decision-making issues at the front end of innovation. © 2014 RADMA and John Wiley & Sons Ltd.
Resumo:
In many real world situations, we make decisions in the presence of multiple, often conflicting and non-commensurate objectives. The process of optimizing systematically and simultaneously over a set of objective functions is known as multi-objective optimization. In multi-objective optimization, we have a (possibly exponentially large) set of decisions and each decision has a set of alternatives. Each alternative depends on the state of the world, and is evaluated with respect to a number of criteria. In this thesis, we consider the decision making problems in two scenarios. In the first scenario, the current state of the world, under which the decisions are to be made, is known in advance. In the second scenario, the current state of the world is unknown at the time of making decisions. For decision making under certainty, we consider the framework of multiobjective constraint optimization and focus on extending the algorithms to solve these models to the case where there are additional trade-offs. We focus especially on branch-and-bound algorithms that use a mini-buckets algorithm for generating the upper bound at each node of the search tree (in the context of maximizing values of objectives). Since the size of the guiding upper bound sets can become very large during the search, we introduce efficient methods for reducing these sets, yet still maintaining the upper bound property. We define a formalism for imprecise trade-offs, which allows the decision maker during the elicitation stage, to specify a preference for one multi-objective utility vector over another, and use such preferences to infer other preferences. The induced preference relation then is used to eliminate the dominated utility vectors during the computation. For testing the dominance between multi-objective utility vectors, we present three different approaches. The first is based on a linear programming approach, the second is by use of distance-based algorithm (which uses a measure of the distance between a point and a convex cone); the third approach makes use of a matrix multiplication, which results in much faster dominance checks with respect to the preference relation induced by the trade-offs. Furthermore, we show that our trade-offs approach, which is based on a preference inference technique, can also be given an alternative semantics based on the well known Multi-Attribute Utility Theory. Our comprehensive experimental results on common multi-objective constraint optimization benchmarks demonstrate that the proposed enhancements allow the algorithms to scale up to much larger problems than before. For decision making problems under uncertainty, we describe multi-objective influence diagrams, based on a set of p objectives, where utility values are vectors in Rp, and are typically only partially ordered. These can be solved by a variable elimination algorithm, leading to a set of maximal values of expected utility. If the Pareto ordering is used this set can often be prohibitively large. We consider approximate representations of the Pareto set based on ϵ-coverings, allowing much larger problems to be solved. In addition, we define a method for incorporating user trade-offs, which also greatly improves the efficiency.
Resumo:
Credal nets are probabilistic graphical models which extend Bayesian nets to cope with sets of distributions. This feature makes the model particularly suited for the implementation of classifiers and knowledge-based systems. When working with sets of (instead of single) probability distributions, the identification of the optimal option can be based on different criteria, some of them eventually leading to multiple choices. Yet, most of the inference algorithms for credal nets are designed to compute only the bounds of the posterior probabilities. This prevents some of the existing criteria from being used. To overcome this limitation, we present two simple transformations for credal nets which make it possible to compute decisions based on the maximality and E-admissibility criteria without any modification in the inference algorithms. We also prove that these decision problems have the same complexity of standard inference, being NP^PP-hard for general credal nets and NP-hard for polytrees.
Resumo:
Indications for the most frequently used imaging modalities in implant dentistry are proposed based on clinical need and biologic risk for the patient. To calculate the biologic risk, the authors carried out dose measurements. They demonstrated that the risk from a periapical radiograph is 20% of that from a panoramic radiograph. A panoramic radiograph and a series of 4 conventional tomographs of a single-tooth gap in the molar region carry 5% and 13% of the risk from computed tomography of the maxilla, respectively. Panoramic radiography is considered the standard radiographic examination for treatment planning of implant patients, because it imparts a low dose while giving the best radiographic survey. Periapical radiographs are used to elucidate details or to complete the findings obtained from the panoramic radiograph. Other radiographic methods, such as conventional film tomography or computed tomography, are applied only in special circumstances, film tomography being preferred for smaller regions of interest and computed tomography being justified for the complete maxilla or mandible when methods for dose reduction are followed. During follow-up, intraoral radiography is considered the standard radiographic examination, particularly for implants in the anterior region of the maxilla or for scientific studies. In patients requiring more than 5 periapical images, panoramic radiography is preferred.
Resumo:
OBJECTIVES To evaluate prosthetic parameters in the edentulous anterior maxilla for decision making between fixed and removable implant prosthesis using virtual planning software. MATERIAL AND METHODS CT- or DVT-scans of 43 patients (mean age 62 ± 8 years) with an edentulous maxilla were analyzed with the NobelGuide software. Implants (≥3.5 mm diameter, ≥10 mm length) were virtually placed in the optimal three-dimensional prosthetic position of all maxillary front teeth. Anatomical and prosthetic landmarks, including the cervical crown point (C-Point), the acrylic flange border (F-Point), and the implant-platform buccal-end (I-Point) were defined in each middle section to determine four measuring parameters: (1) acrylic flange height (FLHeight), (2) mucosal coverage (MucCov), (3) crown-Implant distance (CID) and (4) buccal prosthesis profile (ProsthProfile). Based on these parameters, all patients were assigned to one of three classes: (A) MucCov ≤ 0 mm and ProsthProfile≥45(0) allowing for fixed prosthesis, (B) MucCov = 0-5 mm and/or ProsthProfile = 30(0) -45(0) probably allowing for fixed prosthesis, and (C) MucCov ≥ 5 mm and/or ProsthProfile ≤ 30(0) where removable prosthesis is favorable. Statistical analyses included descriptive methods and non-parametric tests. RESULTS Mean values were for FLHeight 10.0 mm, MucCov 5.6 mm, CID 7.4 mm, and ProsthProfile 39.1(0) . Seventy percent of patients fulfilled class C criteria (removable), 21% class B (probably fixed), and 2% class A (fixed), while in 7% (three patients) bone volume was insufficient for implant planning. CONCLUSIONS The proposed classification and virtual planning procedure simplify the decision-making process regarding type of prosthesis and increase predictability of esthetic treatment outcomes. It was demonstrated that in the majority of cases, the space between the prosthetic crown and implant platform had to be filled with prosthetic materials.
Resumo:
One of the major challenges in evolutionary robotics is constituted by the need of the robot being able to make decisions on its own, in accordance with the multiple tasks programmed, optimizing its timings and power. In this paper, we present a new automatic decision making mechanism for a robot guide that allows the robot to make the best choice in order to reach its aims, performing its tasks in an optimal way. The election of which is the best alternative is based on a series of criteria and restrictions of the tasks to perform. The software developed in the project has been verified on the tour-guide robot Urbano. The most important aspect of this proposal is that the design uses learning as the means to optimize the quality in the decision making. The modeling of the quality index of the best choice to perform is made using fuzzy logic and it represents the beliefs of the robot, which continue to evolve in order to match the "external reality”. This fuzzy system is used to select the most appropriate set of tasks to perform during the day. With this tool, the tour guide-robot prepares its agenda daily, which satisfies the objectives and restrictions, and it identifies the best task to perform at each moment. This work is part of the ARABOT project of the Intelligent Control Research Group at the Universidad Politécnica de Madrid to create "awareness" in a robot guide.