948 resultados para Multiple delay estimation
Resumo:
The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
Buruli Ulcer (BU) is a neglected infectious disease caused by Mycobacterium ulcerans that is responsible for severe necrotizing cutaneous lesions that may be associated with bone involvement. Clinical presentations of BU lesions are classically classified as papules, nodules, plaques and edematous infiltration, ulcer or osteomyelitis. Within these different clinical forms, lesions can be further classified as severe forms based on focality (multiple lesions), lesions' size (>15 cm diameter) or WHO Category (WHO Category 3 lesions). There are studies reporting an association between delay in seeking medical care and the development of ulcerative forms of BU or osteomyelitis, but the effect of time-delay on the emergence of lesions classified as severe has not been addressed. To address both issues, and in a cohort of laboratory-confirmed BU cases, 476 patients from a medical center in Allada, Benin, were studied. In this laboratory-confirmed cohort, we validated previous observations, demonstrating that time-delay is statistically related to the clinical form of BU. Indeed, for non-ulcerated forms (nodule, edema, and plaque) the median time-delay was 32.5 days (IQR 30.0-67.5), while for ulcerated forms it was 60 days (IQR 20.0-120.0) (p = 0.009), and for bone lesions, 365 days (IQR 228.0-548.0). On the other hand, we show here that time-delay is not associated with the more severe phenotypes of BU, such as multi-focal lesions (median 90 days; IQR 56-217.5; p = 0.09), larger lesions (diameter >15 cm) (median 60 days; IQR 30-120; p = 0.92) or category 3 WHO classification (median 60 days; IQR 30-150; p = 0.20), when compared with unifocal (median 60 days; IQR 30-90), small lesions (diameter =15 cm) (median 60 days; IQR 30-90), or WHO category 1+2 lesions (median 60 days; IQR 30-90), respectively. Our results demonstrate that after an initial period of progression towards ulceration or bone involvement, BU lesions become stable regarding size and focal/multi-focal progression. Therefore, in future studies on BU epidemiology, severe clinical forms should be systematically considered as distinct phenotypes of the same disease and thus subjected to specific risk factor investigation.
Resumo:
Report for the scientific sojourn carried out at the Université Catholique de Louvain, Belgium, from March until June 2007. In the first part, the impact of important geometrical parameters such as source and drain thickness, fin spacing, spacer width, etc. on the parasitic fringing capacitance component of multiple-gate field-effect transistors (MuGFET) is deeply analyzed using finite element simulations. Several architectures such as single gate, FinFETs (double gate), triple-gate represented by Pi-gate MOSFETs are simulated and compared in terms of channel and fringing capacitances for the same occupied die area. Simulations highlight the great impact of diminishing the spacing between fins for MuGFETs and the trade-off between the reduction of parasitic source and drain resistances and the increase of fringing capacitances when Selective Epitaxial Growth (SEG) technology is introduced. The impact of these technological solutions on the transistor cut-off frequencies is also discussed. The second part deals with the study of the effect of the volume inversion (VI) on the capacitances of undoped Double-Gate (DG) MOSFETs. For that purpose, we present simulation results for the capacitances of undoped DG MOSFETs using an explicit and analytical compact model. It monstrates that the transition from volume inversion regime to dual gate behaviour is well simulated. The model shows an accurate dependence on the silicon layer thickness,consistent withtwo dimensional numerical simulations, for both thin and thick silicon films. Whereas the current drive and transconductance are enhanced in volume inversion regime, our results show thatintrinsic capacitances present higher values as well, which may limit the high speed (delay time) behaviour of DG MOSFETs under volume inversion regime.
Resumo:
An online algorithm for determining respiratory mechanics in patients using non-invasive ventilation (NIV) in pressure support mode was developed and embedded in a ventilator system. Based on multiple linear regression (MLR) of respiratory data, the algorithm was tested on a patient bench model under conditions with and without leak and simulating a variety of mechanics. Bland-Altman analysis indicates reliable measures of compliance across the clinical range of interest (± 11-18% limits of agreement). Resistance measures showed large quantitative errors (30-50%), however, it was still possible to qualitatively distinguish between normal and obstructive resistances. This outcome provides clinically significant information for ventilator titration and patient management.
Resumo:
BACKGROUND Cognitive impairment is a common feature in multiple sclerosis (MS) patients and occurs in 60% of all cases. Unfortunately, neurological examination does not always agree with the neuropsychological evaluation in determining the cognitive profile of the patient. On the other hand, psychophysiological techniques such as event-related potentials (ERPs) can help in evaluating cognitive impairment in different pathologies. Behavioural responses and EEG signals were recorded during the experiment in three experimental groups: 1) a relapsing-remitting group (RRMS), 2) a benign multiple sclerosis group (BMS) and 3) a Control group. The paradigm employed was a spatial attention task with central cues (Posner experiment). The main aim was to observe the differences in the performance (behavioural variables) and in the latency and amplitude of the ERP components among these groups. RESULTS Our data indicate that both MS groups showed poorer task performance (longer reaction times and lower percentage of correct responses), a latency delay for the N1 and P300 component, and a different amplitude for the frontal N1. Moreover, the deficit in the BMS group, indexed by behavioural and pyschophysiological variables, was more pronounced compared to the RRMS group. CONCLUSION The present results suggest a cognitive impairment in the information processing in all of these patients. Comparing both pathological groups, cognitive impairment was more accentuated in the BMS group compared to the RMSS group. This suggests a silent deterioration of cognitive skills for the BMS that is not usually treated with pharmacological or neuropsychological therapy.
Resumo:
This paper presents an application of the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach to the estimation of quantities of Gross Value Added (GVA) referring to economic entities defined at different scales of study. The method first estimates benchmark values of the pace of GVA generation per hour of labour across economic sectors. These values are estimated as intensive variables –e.g. €/hour– by dividing the various sectorial GVA of the country (expressed in € per year) by the hours of paid work in that same sector per year. This assessment is obtained using data referring to national statistics (top down information referring to the national level). Then, the approach uses bottom-up information (the number of hours of paid work in the various economic sectors of an economic entity –e.g. a city or a province– operating within the country) to estimate the amount of GVA produced by that entity. This estimate is obtained by multiplying the number of hours of work in each sector in the economic entity by the benchmark value of GVA generation per hour of work of that particular sector (national average). This method is applied and tested on two different socio-economic systems: (i) Catalonia (considered level n) and Barcelona (considered level n-1); and (ii) the region of Lima (considered level n) and Lima Metropolitan Area (considered level n-1). In both cases, the GVA per year of the local economic entity –Barcelona and Lima Metropolitan Area – is estimated and the resulting value is compared with GVA data provided by statistical offices. The empirical analysis seems to validate the approach, even though the case of Lima Metropolitan Area indicates a need for additional care when dealing with the estimate of GVA in primary sectors (agriculture and mining).
Resumo:
BACKGROUND A considerable percentage of multiple sclerosis patients have attentional impairment, but understanding its neurophysiological basis remains a challenge. The Attention Network Test allows 3 attentional networks to be studied. Previous behavioural studies using this test have shown that the alerting network is impaired in multiple sclerosis. The aim of this study was to identify neurophysiological indexes of the attention impairment in relapsing-remitting multiple sclerosis patients using this test. RESULTS After general slowing had been removed in patients group to isolate the effects of each condition, some behavioral differences between them were obtained. About Contingent Negative Variation, a statistically significant decrement were found in the amplitude for Central and Spatial Cue Conditions for patient group (p<0.05). ANOVAs showed for the patient group a significant latency delay for P1 and N1 components (p<0.05) and a decrease of P3 amplitude for congruent and incongruent stimuli (p<0.01). With regard to correlation analysis, PASAT-3s and SDMT showed significant correlations with behavioral measures of the Attention Network Test (p<0.01) and an ERP parameter (CNV amplitude). CONCLUSIONS Behavioral data are highly correlated with the neuropsychological scores and show that the alerting and orienting mechanisms in the patient group were impaired. Reduced amplitude for the Contingent Negative Variation in the patient group suggests that this component could be a physiological marker related to the alerting and orienting impairment in relapsing-remitting multiple sclerosis. P1 and N1 delayed latencies are evidence of the demyelination process that causes impairment in the first steps of the visual sensory processing. Lastly, P3 amplitude shows a general decrease for the pathological group probably indexing a more central impairment. These results suggest that the Attention Network Test give evidence of multiple levels of attention impairment, which could help in the assessment and treatment of relapsing-remitting multiple sclerosis patients.
Resumo:
The 2q3 duplication and 4q3 deletion syndromes are two conditions with variable phenotypes including Pierre-Robin sequence (PRS), limb anomalies, congenital heart defects (CHD), developmental delays and intellectual disabilities. We describe a patient born to a mother with a balanced t(2; 4) translocation who combines both a 2q34-qter duplication and a 4q34.2-qter deletion through inheritance of the derivative chromosome 4 (der(4)). He showed developmental delay, growth retardation, hearing problems, minor facial and non-facial anomalies, such as bilateral fifth finger shortness and clinodactyly, but no PRS or CHD. The comparison of his features with those of 46 and 65 published cases of 2q3 duplication and 4q3 deletion, respectively, allows us to further restrict the size of the proposed critical intervals for PRS and CHD on chromosome 4.
Resumo:
The problem of jointly estimating the number, the identities, and the data of active users in a time-varying multiuser environment was examined in a companion paper (IEEE Trans. Information Theory, vol. 53, no. 9, September 2007), at whose core was the use of the theory of finite random sets on countable spaces. Here we extend that theory to encompass the more general problem of estimating unknown continuous parameters of the active-user signals. This problem is solved here by applying the theory of random finite sets constructed on hybrid spaces. We doso deriving Bayesian recursions that describe the evolution withtime of a posteriori densities of the unknown parameters and data.Unlike in the above cited paper, wherein one could evaluate theexact multiuser set posterior density, here the continuous-parameter Bayesian recursions do not admit closed-form expressions. To circumvent this difficulty, we develop numerical approximationsfor the receivers that are based on Sequential Monte Carlo (SMC)methods (“particle filtering”). Simulation results, referring to acode-divisin multiple-access (CDMA) system, are presented toillustrate the theory.
Resumo:
Wireless “MIMO” systems, employing multiple transmit and receive antennas, promise a significant increase of channel capacity, while orthogonal frequency-division multiplexing (OFDM) is attracting a good deal of attention due to its robustness to multipath fading. Thus, the combination of both techniques is an attractive proposition for radio transmission. The goal of this paper is the description and analysis of a new and novel pilot-aided estimator of multipath block-fading channels. Typical models leading to estimation algorithms assume the number of multipath components and delays to be constant (and often known), while their amplitudes are allowed to vary with time. Our estimator is focused instead on the more realistic assumption that the number of channel taps is also unknown and varies with time following a known probabilistic model. The estimation problem arising from these assumptions is solved using Random-Set Theory (RST), whereby one regards the multipath-channel response as a single set-valued random entity.Within this framework, Bayesian recursive equations determine the evolution with time of the channel estimator. Due to the lack of a closed form for the solution of Bayesian equations, a (Rao–Blackwellized) particle filter (RBPF) implementation ofthe channel estimator is advocated. Since the resulting estimator exhibits a complexity which grows exponentially with the number of multipath components, a simplified version is also introduced. Simulation results describing the performance of our channel estimator demonstrate its effectiveness.
Resumo:
In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.
Resumo:
This paper presents several algorithms for joint estimation of the target number and state in a time-varying scenario. Building on the results presented in [1], which considers estimation of the target number only, we assume that not only the target number, but also their state evolution must be estimated. In this context, we extend to this new scenario the Rao-Blackwellization procedure of [1] to compute Bayes recursions, thus defining reduced-complexity solutions for the multi-target set estimator. A performance assessmentis finally given both in terms of Circular Position Error Probability - aimed at evaluating the accuracy of the estimated track - and in terms of Cardinality Error Probability, aimed at evaluating the reliability of the target number estimates.
Resumo:
In Quantitative Microbial Risk Assessment, it is vital to understand how lag times of individual cells are distributed over a bacterial population. Such identified distributions can be used to predict the time by which, in a growth-supporting environment, a few pathogenic cells can multiply to a poisoning concentration level. We model the lag time of a single cell, inoculated into a new environment, by the delay of the growth function characterizing the generated subpopulation. We introduce an easy-to-implement procedure, based on the method of moments, to estimate the parameters of the distribution of single cell lag times. The advantage of the method is especially apparent for cases where the initial number of cells is small and random, and the culture is detectable only in the exponential growth phase.
Resumo:
We present a Bayesian approach for estimating the relative frequencies of multi-single nucleotide polymorphism (SNP) haplotypes in populations of the malaria parasite Plasmodium falciparum by using microarray SNP data from human blood samples. Each sample comes from a malaria patient and contains one or several parasite clones that may genetically differ. Samples containing multiple parasite clones with different genetic markers pose a special challenge. The situation is comparable with a polyploid organism. The data from each blood sample indicates whether the parasites in the blood carry a mutant or a wildtype allele at various selected genomic positions. If both mutant and wildtype alleles are detected at a given position in a multiply infected sample, the data indicates the presence of both alleles, but the ratio is unknown. Thus, the data only partially reveals which specific combinations of genetic markers (i.e. haplotypes across the examined SNPs) occur in distinct parasite clones. In addition, SNP data may contain errors at non-negligible rates. We use a multinomial mixture model with partially missing observations to represent this data and a Markov chain Monte Carlo method to estimate the haplotype frequencies in a population. Our approach addresses both challenges, multiple infections and data errors.
Resumo:
This paper presents a new and original variational framework for atlas-based segmentation. The proposed framework integrates both the active contour framework, and the dense deformation fields of optical flow framework. This framework is quite general and encompasses many of the state-of-the-art atlas-based segmentation methods. It also allows to perform the registration of atlas and target images based on only selected structures of interest. The versatility and potentiality of the proposed framework are demonstrated by presenting three diverse applications: In the first application, we show how the proposed framework can be used to simulate the growth of inconsistent structures like a tumor in an atlas. In the second application, we estimate the position of nonvisible brain structures based on the surrounding structures and validate the results by comparing with other methods. In the final application, we present the segmentation of lymph nodes in the Head and Neck CT images, and demonstrate how multiple registration forces can be used in this framework in an hierarchical manner.