949 resultados para Multiple Object Tracking
Resumo:
When visual sensor networks are composed of cameras which can adjust the zoom factor of their own lens, one must determine the optimal zoom levels for the cameras, for a given task. This gives rise to an important trade-off between the overlap of the different cameras’ fields of view, providing redundancy, and image quality. In an object tracking task, having multiple cameras observe the same area allows for quicker recovery, when a camera fails. In contrast having narrow zooms allow for a higher pixel count on regions of interest, leading to increased tracking confidence. In this paper we propose an approach for the self-organisation of redundancy in a distributed visual sensor network, based on decentralised multi-objective online learning using only local information to approximate the global state. We explore the impact of different zoom levels on these trade-offs, when tasking omnidirectional cameras, having perfect 360-degree view, with keeping track of a varying number of moving objects. We further show how employing decentralised reinforcement learning enables zoom configurations to be achieved dynamically at runtime according to an operator’s preference for maximising either the proportion of objects tracked, confidence associated with tracking, or redundancy in expectation of camera failure. We show that explicitly taking account of the level of overlap, even based only on local knowledge, improves resilience when cameras fail. Our results illustrate the trade-off between maintaining high confidence and object coverage, and maintaining redundancy, in anticipation of future failure. Our approach provides a fully tunable decentralised method for the self-organisation of redundancy in a changing environment, according to an operator’s preferences.
Resumo:
The main challenges of multimedia data retrieval lie in the effective mapping between low-level features and high-level concepts, and in the individual users' subjective perceptions of multimedia content. ^ The objectives of this dissertation are to develop an integrated multimedia indexing and retrieval framework with the aim to bridge the gap between semantic concepts and low-level features. To achieve this goal, a set of core techniques have been developed, including image segmentation, content-based image retrieval, object tracking, video indexing, and video event detection. These core techniques are integrated in a systematic way to enable the semantic search for images/videos, and can be tailored to solve the problems in other multimedia related domains. In image retrieval, two new methods of bridging the semantic gap are proposed: (1) for general content-based image retrieval, a stochastic mechanism is utilized to enable the long-term learning of high-level concepts from a set of training data, such as user access frequencies and access patterns of images. (2) In addition to whole-image retrieval, a novel multiple instance learning framework is proposed for object-based image retrieval, by which a user is allowed to more effectively search for images that contain multiple objects of interest. An enhanced image segmentation algorithm is developed to extract the object information from images. This segmentation algorithm is further used in video indexing and retrieval, by which a robust video shot/scene segmentation method is developed based on low-level visual feature comparison, object tracking, and audio analysis. Based on shot boundaries, a novel data mining framework is further proposed to detect events in soccer videos, while fully utilizing the multi-modality features and object information obtained through video shot/scene detection. ^ Another contribution of this dissertation is the potential of the above techniques to be tailored and applied to other multimedia applications. This is demonstrated by their utilization in traffic video surveillance applications. The enhanced image segmentation algorithm, coupled with an adaptive background learning algorithm, improves the performance of vehicle identification. A sophisticated object tracking algorithm is proposed to track individual vehicles, while the spatial and temporal relationships of vehicle objects are modeled by an abstract semantic model. ^
Resumo:
This work proposes the analysis of tracking algorithms for point objects and extended targets particle filter on a radar application problem. Through simulations, the number of particles, the process and measurement noise of particle filter have been optimized. Four different scenarios have been considered in this work: point object with linear trajectory, point object with non-linear trajectory, extended object with linear trajectory, extended object with non-linear trajectory. The extended target has been modelled as an ellipse parametrized by the minor and major axes, the orientation angle, and the center coordinates (5 parameters overall).
Resumo:
A instalação de sistemas de videovigilância, no interior ou exterior, em locais como aeroportos, centros comerciais, escritórios, edifícios estatais, bases militares ou casas privadas tem o intuito de auxiliar na tarefa de monitorização do local contra eventuais intrusos. Com estes sistemas é possível realizar a detecção e o seguimento das pessoas que se encontram no ambiente local, tornando a monitorização mais eficiente. Neste contexto, as imagens típicas (imagem natural e imagem infravermelha) são utilizadas para extrair informação dos objectos detectados e que irão ser seguidos. Contudo, as imagens convencionais são afectadas por condições ambientais adversas como o nível de luminosidade existente no local (luzes muito fortes ou escuridão total), a presença de chuva, de nevoeiro ou de fumo que dificultam a tarefa de monitorização das pessoas. Deste modo, tornou‐se necessário realizar estudos e apresentar soluções que aumentem a eficácia dos sistemas de videovigilância quando sujeitos a condições ambientais adversas, ou seja, em ambientes não controlados, sendo uma das soluções a utilização de imagens termográficas nos sistemas de videovigilância. Neste documento são apresentadas algumas das características das câmaras e imagens termográficas, assim como uma caracterização de cenários de vigilância. Em seguida, são apresentados resultados provenientes de um algoritmo que permite realizar a segmentação de pessoas utilizando imagens termográficas. O maior foco desta dissertação foi na análise dos modelos de descrição (Histograma de Cor, HOG, SIFT, SURF) para determinar o desempenho dos modelos em três casos: distinguir entre uma pessoa e um carro; distinguir entre duas pessoas distintas e determinar que é a mesma pessoa ao longo de uma sequência. De uma forma sucinta pretendeu‐se, com este estudo, contribuir para uma melhoria dos algoritmos de detecção e seguimento de objectos em sequências de vídeo de imagens termográficas. No final, através de uma análise dos resultados provenientes dos modelos de descrição, serão retiradas conclusões que servirão de indicação sobre qual o modelo que melhor permite discriminar entre objectos nas imagens termográficas.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
En aquest treball realitzem un estudi sobre la detecció y la descripció de punts característics, una tecnologia que permet extreure informació continguda en les imatges. Primerament presentem l'estat de l'art juntament amb una avaluació dels mètodes més rellevants. A continuació proposem els nous mètodes que hem creat de detecció i descripció, juntament amb l'algorisme òptim anomenat DART, el qual supera l'estat de l'art. Finalment mostrem algunes aplicacions on s'utilitzen els punts DART. Basant-se en l'aproximació de l'espai d'escales Gaussià, el detector proposat pot extreure punts de distint tamany invariants davant canvis en el punt de vista, la rotació i la iluminació. La reutilització de l'espai d'escales durant el procés de descripció, així com l'ús d'estructures simplificades i optimitzades, permeten realitzar tot el procediment en un temps computacional menor a l'obtingut fins al moment. Així s'aconsegueixen punts invariants i distingibles de forma ràpida, el qual permet la seva utilització en aplicacions com el seguiment d'objectes, la reconstrucció d'escenaris 3D i en motors de cerca visual.
Resumo:
El present TFM té per objectiu aplicar tècniques d'intel·ligència artificial per realitzar el seguiment de les extremitats dels ratolins i les vibrisses del seu musell. Aquest objectiu es deriva de la necessitat per part dels realitzadors d'experiments optogenètics de registrar els moviments dels ratolins.
Resumo:
Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.
Resumo:
The problem of automatic recognition of the fish from the video sequences is discussed in this Master’s Thesis. This is a very urgent issue for many organizations engaged in fish farming in Finland and Russia because the process of automation control and counting of individual species is turning point in the industry. The difficulties and the specific features of the problem have been identified in order to find a solution and propose some recommendations for the components of the automated fish recognition system. Methods such as background subtraction, Kalman filtering and Viola-Jones method were implemented during this work for detection, tracking and estimation of fish parameters. Both the results of the experiments and the choice of the appropriate methods strongly depend on the quality and the type of a video which is used as an input data. Practical experiments have demonstrated that not all methods can produce good results for real data, whereas on synthetic data they operate satisfactorily.
Resumo:
This paper details an investigation into sensory substitution by means of direct electrical stimulation of the tongue for the purpose of information input to the human brain. In particular, a device has been constructed and a series of trials have been performed in order to demonstrate the efficacy and performance of an electro-tactile array mounted onto the tongue surface for the purpose of sensory augmentation. Tests have shown that by using a low resolution array a computer-human feedback loop can be successfully implemented by humans in order to complete tasks such as object tracking, surface shape identification and shape recognition with no training or prior experience with the device. Comparisons of this technique have been made with visual alternatives and these show that the tongue based tactile array can match such methods in convenience and accuracy in performing simple tasks.
Resumo:
Tabletop computers featuring multi-touch input and object tracking are a common platform for research on Tangible User Interfaces (also known as Tangible Interaction). However, such systems are confined to sensing activity on the tabletop surface, disregarding the rich and relatively unexplored interaction canvas above the tabletop. This dissertation contributes with tCAD, a 3D modeling tool combining fiducial marker tracking, finger tracking and depth sensing in a single system. This dissertation presents the technical details of how these features were integrated, attesting to its viability through the design, development and early evaluation of the tCAD application. A key aspect of this work is a description of the interaction techniques enabled by merging tracked objects with direct user input on and above a table surface.
Resumo:
Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis. © 2012 IEEE.
Resumo:
In the last years radar sensor networks for localization and tracking in indoor environment have generated more and more interest, especially for anti-intrusion security systems. These networks often use Ultra Wide Band (UWB) technology, which consists in sending very short (few nanoseconds) impulse signals. This approach guarantees high resolution and accuracy and also other advantages such as low price, low power consumption and narrow-band interference (jamming) robustness. In this thesis the overall data processing (done in MATLAB environment) is discussed, starting from experimental measures from sensor devices, ending with the 2D visualization of targets movements over time and focusing mainly on detection and localization algorithms. Moreover, two different scenarios and both single and multiple target tracking are analyzed.
Resumo:
For broadcasting purposes MIXED REALITY, the combination of real and virtual scene content, has become ubiquitous nowadays. Mixed Reality recording still requires expensive studio setups and is often limited to simple color keying. We present a system for Mixed Reality applications which uses depth keying and provides threedimensional mixing of real and artificial content. It features enhanced realism through automatic shadow computation which we consider a core issue to obtain realism and a convincing visual perception, besides the correct alignment of the two modalities and correct occlusion handling. Furthermore we present a possibility to support placement of virtual content in the scene. Core feature of our system is the incorporation of a TIME-OF-FLIGHT (TOF)-camera device. This device delivers real-time depth images of the environment at a reasonable resolution and quality. This camera is used to build a static environment model and it also allows correct handling of mutual occlusions between real and virtual content, shadow computation and enhanced content planning. The presented system is inexpensive, compact, mobile, flexible and provides convenient calibration procedures. Chroma-keying is replaced by depth-keying which is efficiently performed on the GRAPHICS PROCESSING UNIT (GPU) by the usage of an environment model and the current ToF-camera image. Automatic extraction and tracking of dynamic scene content is herewith performed and this information is used for planning and alignment of virtual content. An additional sustainable feature is that depth maps of the mixed content are available in real-time, which makes the approach suitable for future 3DTV productions. The presented paper gives an overview of the whole system approach including camera calibration, environment model generation, real-time keying and mixing of virtual and real content, shadowing for virtual content and dynamic object tracking for content planning.