164 resultados para Multidecadal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequency of extreme rainfall events in Southern Brazil is impacted by Ell Nino - Southern Oscillation (ENSO) episodes, especially in austral spring. There are two areas in which this impact is more significant: one is on the coast, where extreme events are more frequent during El Nino (EN) and the other one extends inland, where extreme events increase during EN and decrease during La Nina (LN). Atmospheric circulation patterns associated with severe rainfall in those areas are similar (opposite) to anomalous patterns characteristic of EN (LN) episodes, indicating why increase (decrease) of extreme events in EN (LN) episodes is favoured. The most recurrent precipitation patterns during extreme rainfall events in each of these areas are disclosed by Principal Component Analysis (PCA) and evidence the separation between extreme events in these areas: a severe precipitation event generally does not occur simultaneously in the coast and inland, although they may Occur inland and in the coastal region in sequence. Although EN predominantly enhances extreme rainfall, there are EN years in which fewer severe events occur than the average of neutral years, and also the enhancement of extreme rainfall is not uniform for different EN episodes, because the interdecadal non-ENSO variability also modulates significantly the frequency of extreme events in Southern Brazil. The inland region, which is more affected, shows increase (decrease) of extreme rainfall in association with the negative (positive) phase of the Atlantic Multidecadal Variability, with the negative (positive) phase of the Pacific Multidecadal Variability and with the positive (negative) phase of the Pacific Interdecadal Variability. Copyright (C) 2008 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Standard procedures for forecasting flood risk (Bulletin 17B) assume annual maximum flood (AMF) series are stationary, meaning the distribution of flood flows is not significantly affected by climatic trends/cycles, or anthropogenic activities within the watershed. Historical flood events are therefore considered representative of future flood occurrences, and the risk associated with a given flood magnitude is modeled as constant over time. However, in light of increasing evidence to the contrary, this assumption should be reconsidered, especially as the existence of nonstationarity in AMF series can have significant impacts on planning and management of water resources and relevant infrastructure. Research presented in this thesis quantifies the degree of nonstationarity evident in AMF series for unimpaired watersheds throughout the contiguous U.S., identifies meteorological, climatic, and anthropogenic causes of this nonstationarity, and proposes an extension of the Bulletin 17B methodology which yields forecasts of flood risk that reflect climatic influences on flood magnitude. To appropriately forecast flood risk, it is necessary to consider the driving causes of nonstationarity in AMF series. Herein, large-scale climate patterns—including El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO)—are identified as influencing factors on flood magnitude at numerous stations across the U.S. Strong relationships between flood magnitude and associated precipitation series were also observed for the majority of sites analyzed in the Upper Midwest and Northeastern regions of the U.S. Although relationships between flood magnitude and associated temperature series are not apparent, results do indicate that temperature is highly correlated with the timing of flood peaks. Despite consideration of watersheds classified as unimpaired, analyses also suggest that identified change-points in AMF series are due to dam construction, and other types of regulation and diversion. Although not explored herein, trends in AMF series are also likely to be partially explained by changes in land use and land cover over time. Results obtained herein suggest that improved forecasts of flood risk may be obtained using a simple modification of the Bulletin 17B framework, wherein the mean and standard deviation of the log-transformed flows are modeled as functions of climate indices associated with oceanic-atmospheric patterns (e.g. AMO, ENSO, NAO, and PDO) with lead times between 3 and 9 months. Herein, one-year ahead forecasts of the mean and standard deviation, and subsequently flood risk, are obtained by applying site specific multivariate regression models, which reflect the phase and intensity of a given climate pattern, as well as possible impacts of coupling of the climate cycles. These forecasts of flood risk are compared with forecasts derived using the existing Bulletin 17B model; large differences in the one-year ahead forecasts are observed in some locations. The increased knowledge of the inherent structure of AMF series and an improved understanding of physical and/or climatic causes of nonstationarity gained from this research should serve as insight for the formulation of a physical-casual based statistical model, incorporating both climatic variations and human impacts, for flood risk over longer planning horizons (e.g., 10-, 50, 100-years) necessary for water resources design, planning, and management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding natural climate variability and its driving factors is crucial to assessing future climate change. Therefore, comparing proxy-based climate reconstructions with forcing factors as well as comparing these with paleoclimate model simulations is key to gaining insights into the relative roles of internal versus forced variability. A review of the state of modelling of the climate of the last millennium prior to the CMIP5–PMIP3 (Coupled Model Intercomparison Project Phase 5–Paleoclimate Modelling Intercomparison Project Phase 3) coordinated effort is presented and compared to the available temperature reconstructions. Simulations and reconstructions broadly agree on reproducing the major temperature changes and suggest an overall linear response to external forcing on multidecadal or longer timescales. Internal variability is found to have an important influence at hemispheric and global scales. The spatial distribution of simulated temperature changes during the transition from the Medieval Climate Anomaly to the Little Ice Age disagrees with that found in the reconstructions. Thus, either internal variability is a possible major player in shaping temperature changes through the millennium or the model simulations have problems realistically representing the response pattern to external forcing. A last millennium transient climate response (LMTCR) is defined to provide a quantitative framework for analysing the consistency between simulated and reconstructed climate. Beyond an overall agreement between simulated and reconstructed LMTCR ranges, this analysis is able to single out specific discrepancies between some reconstructions and the ensemble of simulations. The disagreement is found in the cases where the reconstructions show reduced covariability with external forcings or when they present high rates of temperature change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Northwestern North America has one of the highest rates of recent temperature increase in the world, but the putative “divergence problem” in dendroclimatology potentially limits the ability of tree-ring proxy data at high latitudes to provide long-term context for current anthropogenic change. Here, summer temperatures are reconstructed from a Picea glauca maximum latewood density (MXD) chronology that shows a stable relationship to regional temperatures and spans most of the last millennium at the Firth River in northeastern Alaska. The warmest epoch in the last nine centuries is estimated to have occurred during the late twentieth century, with average temperatures over the last 30 yr of the reconstruction developed for this study [1973–2002 in the Common Era (CE)] approximately 1.3° ± 0.4°C warmer than the long-term preindustrial mean (1100–1850 CE), a change associated with rapid increases in greenhouse gases. Prior to the late twentieth century, multidecadal temperature fluctuations covary broadly with changes in natural radiative forcing. The findings presented here emphasize that tree-ring proxies can provide reliable indicators of temperature variability even in a rapidly warming climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews developments in our understanding of the state of the Antarctic and Southern Ocean climate and its relation to the global climate system over the last few millennia. Climate over this and earlier periods has not been stable, as evidenced by the occurrence of abrupt changes in atmospheric circulation and temperature recorded in Antarctic ice core proxies for past climate. Two of the most prominent abrupt climate change events are characterized by intensification of the circumpolar westerlies (also known as the Southern Annular Mode) between similar to 6000 and 5000 years ago and since 1200-1000 years ago. Following the last of these is a period of major trans-Antarctic reorganization of atmospheric circulation and temperature between A. D. 1700 and 1850. The two earlier Antarctic abrupt climate change events appear linked to but predate by several centuries even more abrupt climate change in the North Atlantic, and the end of the more recent event is coincident with reorganization of atmospheric circulation in the North Pacific. Improved understanding of such events and of the associations between abrupt climate change events recorded in both hemispheres is critical to predicting the impact and timing of future abrupt climate change events potentially forced by anthropogenic changes in greenhouse gases and aerosols. Special attention is given to the climate of the past 200 years, which was recorded by a network of recently available shallow firn cores, and to that of the past 50 years, which was monitored by the continuous instrumental record. Significant regional climate changes have taken place in the Antarctic during the past 50 years. Atmospheric temperatures have increased markedly over the Antarctic Peninsula, linked to nearby ocean warming and intensification of the circumpolar westerlies. Glaciers are retreating on the peninsula, in Patagonia, on the sub-Antarctic islands, and in West Antarctica adjacent to the peninsula. The penetration of marine air masses has become more pronounced over parts of West Antarctica. Above the surface, the Antarctic troposphere has warmed during winter while the stratosphere has cooled year-round. The upper kilometer of the circumpolar Southern Ocean has warmed, Antarctic Bottom Water across a wide sector off East Antarctica has freshened, and the densest bottom water in the Weddell Sea has warmed. In contrast to these regional climate changes, over most of Antarctica, near-surface temperature and snowfall have not increased significantly during at least the past 50 years, and proxy data suggest that the atmospheric circulation over the interior has remained in a similar state for at least the past 200 years. Furthermore, the total sea ice cover around Antarctica has exhibited no significant overall change since reliable satellite monitoring began in the late 1970s, despite large but compensating regional changes. The inhomogeneity of Antarctic climate in space and time implies that recent Antarctic climate changes are due on the one hand to a combination of strong multidecadal variability and anthropogenic effects and, as demonstrated by the paleoclimate record, on the other hand to multidecadal to millennial scale and longer natural variability forced through changes in orbital insolation, greenhouse gases, solar variability, ice dynamics, and aerosols. Model projections suggest that over the 21st century the Antarctic interior will warm by 3.4 degrees +/- 1 degrees C, and sea ice extent will decrease by similar to 30%. Ice sheet models are not yet adequate enough to answer pressing questins about the effect of projected warming on mass balance and sea level. Considering the potentially major impacts of a warming climate on Antarctica, vigorous efforts are needed to better understand all aspects of the highly coupled Antarctic climate system as well as its influence on the Earth's climate and oceans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long-term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well-dated lake-sediment records in western Uganda and central Kenya. We compared these high-resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern-day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture-balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability of terrestrial carbon reservoirs is thought to be closely linked to variations in climate 1, but the magnitude of carbon–climate feedbacks has proved dificult to constrain for both modern 2–4 and millennial 5–13 timescales. Reconstructions of atmospheric CO2 concentrations for the past thousand years have shown fluctuations on multidecadal to centennial timescales 5–7, but the causes of these fluctuations are unclear. Here we report high-resolution carbon isotope measurements of CO2 trapped within the ice of the West Antarctic Ice Sheet Divide ice core for the past 1,000 years. We use a deconvolution approach 14 to show that changes in terrestrial organic carbon stores best explain the observed multidecadal variations in the 13 C of CO2 and in CO2 concentrations from 755 to 1850 CE. If significant long-term carbon emissions came from pre-industrial anthropogenic land-use changes over this interval, the emissions must have been offset by a natural terrestrial sink for 13 C-depleted carbon, such as peatlands. We find that on multidecadal timescales, carbon cycle changes seem to vary with reconstructed regional climate changes. We conclude that climate variability could be an important control of fluctuations in land carbon storage on these timescales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The abrupt Northern Hemispheric warming at the end of the twentieth century has been attributed to an enhanced greenhouse effect. Yet Greenland and surrounding subpolar North Atlantic remained anomalously cold in 1970s to early 1990s. Here we reconstructed robust Greenland temperature records (North Greenland Ice Core Project and Greenland Ice Sheet Project 2) over the past 2100 years using argon and nitrogen isotopes in air trapped within ice cores and show that this cold anomaly was part of a recursive pattern of antiphase Greenland temperature responses to solar variability with a possible multidecadal lag. We hypothesize that high solar activity during the modern solar maximum (approximately 1950s–1980s) resulted in a cooling over Greenland and surrounding subpolar North Atlantic through the slowdown of Atlantic Meridional Overturning Circulation with atmospheric feedback processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution records of calibrated proxy data for the past millennium are fundamental to place current changes into the context of pre-industrial natural forced and unforced variability. Although the need for regional spatially-explicit comprehensive reconstructions is widely recognized, the proxy data sources are still scarce, particularly for the Southern Hemisphere and especially for South America. We present a 600-year long warm season temperature record from varved sediments of Lago Plomo, a proglacial lake of the Northern Patagonian Ice field in Southern Chile (46°59′S, 72°52′W, 203 m a.s.l.). The thickness of the bright summer sediment layer relative to the dark winter layer (measured as total brightness; % reflectance 400–730 nm) is calibrated against warm season SONDJF temperature (1900–2009; r = 0.58, p(aut) = 0.056, RE = 0.52; CE = 0.15, RMSEP = 0.28 °C; five-year triangular filtered data). In Lago Plomo, warm summer temperatures lead to enhanced glacier melt and suspended sediment transport, which results in thicker light summer layers and to brighter sediments. Although Patagonia shows pronounced regional differences in decadal temperature trends and variability, the 600 years temperature reconstruction from Lago Plomo compares favourably with other regional/continental temperature records, but also emphasizes significant regional differences for which no data and information existed so far. These regional differences seem to be real as they are also reflected in modern climate data sets (1900–2010). The reconstruction shows pronounced subdecadal – multidecadal variability with cold phases during parts of the Little Ice Age (16th and 18th centuries) and in the beginning of the 20th century. The most prominent warm phase is the 19th century which is as warm as the second half of the 20th century. The exceptional summer warmth AD 1780–1810 is also found in other archives of Northern Patagonia and Central Chile. Our record shows the delayed 20th century warming in the Southern Hemisphere. The comparison between winter precipitation and summer temperature (inter-seasonal coupling) from Lago Plomo reveals alternating phases with parallel and contrasting decadal trends of winter precipitation and summer temperature (positive and negative running correlations Rwinter PP; summer TT). This observation from the sediment proxy data is also confirmed by two sets of reanalysis data for the 20th century. Reanalysis data show that phases with negative correlations between winter precipitation and summer temperature (e.g., dry winters and warm summers) at Lago Plomo are characteristic for periods when circumpolar Westerly flow is displaced southward and enhanced around 60°S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arctic Ocean freshening can exert a controlling influence on global climate, triggering strong feedbacks on ocean-atmospheric processes and affecting the global cycling of the world's oceans. Glacier-fed ocean currents such as the Alaska Coastal Current are important sources of freshwater for the Bering Sea shelf, and may also influence the Arctic Ocean freshwater budget. Instrumental data indicate a multiyear freshening episode of the Alaska Coastal Current in the early 21st century. It is uncertain whether this freshening is part of natural multidecadal climate variability or a unique feature of anthropogenically induced warming. In order to answer this, a better understanding of past variations in the Alaska Coastal Current is needed. However, continuous long-term high-resolution observations of the Alaska Coastal Current have only been available for the last 2 decades. In this study, specimens of the long-lived crustose coralline alga Clathromorphum nereostratum were collected within the pathway of the Alaska Coastal Current and utilized as archives of past temperature and salinity. Results indicate that coralline algal Mg/Ca ratios provide a 60 year record of sea surface temperatures and track changes of the Pacific Decadal Oscillation, a pattern of decadal-to-multidecadal ocean-atmosphere climate variability centered over the North Pacific. Algal Ba/Ca ratios (used as indicators of coastal freshwater runoff) are inversely correlated to instrumentally measured Alaska Coastal Current salinity and record the period of freshening from 2001 to 2006. Similar multiyear freshening events are not evident in the earlier portion of the 60 year Ba/Ca record. This suggests that the 21st century freshening of the Alaska Coastal Current is a unique feature related to increasing glacial melt and precipitation on mainland Alaska.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instrumental climate data are limited in length and only available with low spatial coverage before the middle of the 20th century. This is too short to reliably determine and interpret decadal and longer scale climate variability and to understand the underlying mechanisms with sufficient accuracy. A proper knowledge of past variability of the climate system is needed to assess the anthropogenic impact on climate and ecosystems, and also important with regard to long-range climate forecasting. Highly-resolved records of past climate variations that extend beyond pre-industrial times can significantly help to understand long-term climate changes and trends. Indirect information on past environmental and climatic conditions can be deduced from climate-sensitive proxies. Large colonies of massive growing tropical reef corals have been proven to sensitively monitor changes in ambient seawater. Rapid skeletal growth, typically ranging between several millimeters to centimeters per year, allows the development of proxy records at sub-seasonal resolution. Stable oxygen isotopic composition and trace elemental ratios incorporated in the aragonitic coral skeleton can reveal a detailed history of past environmental conditions, e.g., sea surface temperature (SST). In general, coral-based reconstructions from the tropical Atlantic region have lagged behind the extensive work published using coral records from the Indian and Pacific Oceans. Difficulties in the analysis of previously utilized coral archives from the Atlantic, typically corals of the genera Montastrea and Siderastrea, have so far exacerbated the production of long-term high-resolution proxy records. The objective of this study is the evaluation of massive fast-growing corals of the species Diploria strigosa as a new marine archive for climate reconstructions from the tropical Atlantic region. For this purpose, coral records from two study sites in the eastern Caribbean Sea (Guadeloupe, Lesser Antilles; and Archipelago Los Roques, Venezuela) were examined. At Guadeloupe, a century-long monthly resolved multi-proxy coral record was generated. Results present the first d18O (Sr/Ca)-SST calibration equations for the Atlantic braincoral Diploria strigosa, that are robust and consistent with previously published values using other coral species from different regions. Both proxies reflect local variability of SST on a sub-seasonal scale, which is a precondition for studying seasonally phase-locked climate variations, as well as track variability on a larger spatial scale (i.e., in the Caribbean and tropical North Atlantic). Coral Sr/Ca reliably records local annual to interannual temperature variations and is higher correlated to in-situ air temperature than to grid-SST. The warming calculated from coral Sr/Ca is concurrent with the strong surface temperature increase at the study site during the past decades. Proxy data show a close relationship to major climate signals from the tropical Pacific and North Atlantic (the El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)) affecting the seasonal cycle of SST in the North Tropical Atlantic (NTA). Coral oxygen isotopes are also influenced by seawater d18O (d18Osw) which is linked to the hydrological cycle, and capture large-scale climate variability in the NTA region better than Sr/Ca. Results from a quantitative comparison between extreme events in the two most prominent modes of external forcing, namely the ENSO and NAO, and respective events recorded in seasonal coral d18O imply that SST variability at the study site is highly linked to Pacific and North Atlantic variability, by this means supporting the assumptions of observational- and model-based studies which suggest a strong impact of ENSO and NAO forcings onto the NTA region through a modulation of trade wind strength in winter. Results from different spectral analysis tools suggest that interannual climate variability recorded by the coral proxies is II largely dictated by Pacific ENSO forcing, whereas at decadal and longer timescales the influence of the NAO is dominan. tThe Archipelago Los Roques is situated in the southeastern Caribbean Sea, north of the Venezuelan coast. Year-to-year variations in monthly resolved coral d18O of a nearcentury- long Diploria strigosa record are significantly correlated with SST and show pronounced multidecadal variations. About half of the variance in coral d18O can be explained by variations in seawater d18O, which can be estimated by calculating the d18Oresidual via subtracting the SST component from measured coral d18O. The d18Oresidual and a regional precipitation index are highly correlated at low frequencies, suggesting that d18Osw variations are primarily atmospheric-driven. Warmer SSTs at Los Roques broadly coincide with higher precipitation in the southeastern Caribbean at multidecadal time scales, effectively strengthening the climate signal in the coral d18O record. The Los Roques coral d18O record displays a strong and statistically significant relationship to different indices of hurricane activity during the peak of the Atlantic hurricane season in boreal summer and is a particularly good indicator of decadal-multidecadal swings in the latter indices. In general, the detection of long-term changes and trends in Atlantic hurricane activity is hampered due to the limited length of the reliable instrumental record and the known inhomogeneity in the observational databases which result from changes in observing practice and technology over the years. The results suggest that coral-derived proxy data from Los Roques can be used to infer changes in past hurricane activity on timescales that extend well beyond the reliable record. In addition, the coral record exhibits a clear negative trend superimposed on the decadal to multidecadal cycles, indicating a significant warming and freshening of surface waters in the genesis region of tropical cyclones during the past decades. The presented coral d18O time series provides the first and, so far, longest continuous coral-based record of hurricane activity. It appears that the combination of both signals (SST and d18Osw) in coral d18O leads to an amplification of large-scale climate signals in the record, and makes coral d18O even a better proxy for hurricane activity than SST alone. Atlantic hurricane activity naturally exhibits strong multidecadal variations that are associated with the Atlantic Multidecadal Oscillation (AMO), the major mode of lowfrequency variability in the North Atlantic Ocean. However, the mechanisms underlying this multidecadal variability remain controversial, primarily because of the limited instrumental record. The Los Roques coral d18O displays strong multidecadal variability with a period of approximately 60 years that is closely related to the AMO, making the Archipelago Los Roques a very sensitive location for studying low-frequency climate variability in the Atlantic Ocean. In summary, the coral records presented in this thesis capture different key climate variables in the north tropical Atlantic region very well, indicating that fast-growing Diploria strigosa corals represent a promising marine archive for further proxy-based reconstructions of past climate variability on a range of time scales.