193 resultados para Multicore


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report experimental measurements of the reflection spectra of Bragg gratings inscribed in 4-core fibres under transverse loading. Broadening and splitting of the Bragg peaks from each core are observed as a function of load and fibre orientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe what is to our knowledge the first use of fiber Bragg gratings written into three separate cores of a multicore fiber for two-axis curvature measurement. The gratings act as independent, but isothermal, fiber strain gauges for which local curvature determines the difference in strain between cores, permitting temperature-independent bend measurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental measurements of the peak splitting of the reflection spectra of fiber Bragg gratings as a result of birefringence induced by transverse loading of a multicore fiber. Measurements show that the splitting is a function of the applied load and the direction of the load relative to the azimuth of the fiber. A model for calculating the stress in the fiber that is due to an applied load is in good agreement with our experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study existence, stability, and dynamics of linear and nonlinear stationary modes propagating in radially symmetric multicore waveguides with balanced gain and loss. We demonstrate that, in general, the system can be reduced to an effective PT-symmetric dimer with asymmetric coupling. In the linear case, we find that there exist two modes with real propagation constants before an onset of the PT-symmetry breaking while other modes have always the propagation constants with nonzero imaginary parts. This leads to a stable (unstable) propagation of the modes when gain is localized in the core (ring) of the waveguiding structure. In the case of nonlinear response, we show that an interplay between nonlinearity, gain, and loss induces a high degree of instability, with only small windows in the parameter space where quasistable propagation is observed. We propose a novel stabilization mechanism based on a periodic modulation of both gain and loss along the propagation direction that allows bounded light propagation in the multicore waveguiding structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multicore fibre (MCF) sensor to measure the radial deformation of a compliant cylinder under compression is presented. The sensor is connectorised and need not be permanently bonded to the test object. A differential measurement technique using FBGs written into the MCF makes the sensor temperature insensitive. FBG measurement of axial strain of a cylinder under compression is also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an accelerometer based upon a simple fibre cantilever constructed from a short length of multicore fibre(MCF) containing fibre Bragg gratings (FBGs). Two-axis measurement is demonstrated up to 3 kHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long period grating was UV inscribed into a multicore fiber consisting of 120 single mode cores. The multicore fiber that hosts the grating was fusion spliced into a single mode fiber at both ends. The splice creates a taper transition between the two types of fiber that produces a nonadiabatic mode evolution; this results in the illumination of all the modes in the multicore fiber. The spectral characteristics of this fiber device as a function of curvature were investigated. The device yielded a significant spectral sensitivity as high as 1.23 nm/m-1 and 3.57 dB/m-1 to the ultra-low curvature values from 0 to 1 m-1. This fiber device can also distinguish the orientation of curvature experienced by the fiber as the long period grating attenuation bands producing either a blue or red wavelength shift. The finite element method (FEM) model was used to investigate the modal behavior in multicore fiber and to predict the phase-matching curves of the long period grating inscribed into multicore fiber. © 2014 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multicore fiber (MCF) is a physical system of high practical importance. In addition to standard exploitation, MCFs may support discrete vortices that carry orbital angular momentum suitable for spatial-division multiplexing in high-capacity fiber-optic communication systems. These discrete vortices may also be attractive for high-power laser applications. We present the conditions of existence, stability, and coherent propagation of such optical vortices for two practical MCF designs. Through optimization, we found stable discrete vortices that were capable of transferring high coherent power through the MCF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los procesadores multicore asimétricos con repertorio común de instrucciones (AMPsAsymmetric Multicore Processors) han sido propuestos recientemente como alternativa de bajo consumo a los procesadores multicore simétricos convencionales. Los AMPs combinan, en un mismo chip, cores rápidos de alto rendimiento, con cores más lentos y sencillos de consumo reducido. Uno de los ejemplos más destacados de procesador multicore asimétrico es el procesador big.LITTLE de ARM, que incorporan algunos modelos de teléfonos móviles y tablets disponibles en la actualidad. Trabajos previos han demostrado que para explotar los beneficios potenciales de los procesadores multicore asimétricos, el sistema operativo debe tener en cuenta el beneficio relativo (speedup) que cada aplicación experimenta al ejecutar en un core rápido frente a un core lento. Actualmente, los planificadores por defecto de los sistemas operativos de propósito general no tienen en cuenta la diversidad de speedups entre aplicaciones que puede estar presente en una carga de trabajo multiprogramada. En consecuencia, la asignación de aplicaciones a cores que hacen estos planificadores no extrae el máximo rendimiento por vatio de la plataforma. Recientemente se han realizado extensiones en el kernel Linux para ofrecer un mejor soporte de planificación en multicore asimétricos. Sin embargo, estas extensiones del planificador, utilizadas fundamentalmente en dispositivos móviles con el sistema operativo Android, tampoco tienen en cuenta la diversidad de speedups en las aplicaciones de la carga de trabajo. Por lo tanto estas extensiones no constituyen una aproximación robusta desde el punto de vista de la eficiencia energética. En este proyecto se lleva a cabo la evaluación exhaustiva de distintos algoritmos de planificación para multicore asimétricos sobre una plataforma provista de un procesador ARM big.LITTLE. El principal objetivo del estudio es cuantificar el grado de eficiencia energética y el rendimiento global proporcionado por implementaciones de estos algoritmos en el kernel Linux sobre hardware multicore asimétrico real.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate numerically light-pulse combining and pulse compression using wave-collapse (self-focusing) energy-localization dynamics in a continuous-discrete nonlinear system, as implemented in a multicore fiber (MCF) using one-dimensional (1D) and 2D core distribution designs. Large-scale numerical simulations were performed to determine the conditions of the most efficient coherent combining and compression of pulses injected into the considered MCFs. We demonstrate the possibility of combining in a single core 90% of the total energy of pulses initially injected into all cores of a 7-core MCF with a hexagonal lattice. A pulse compression factor of about 720 can be obtained with a 19-core ring MCF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoplethysmography (PPG) sensors allow for noninvasive and comfortable heart-rate (HR) monitoring, suitable for compact wearable devices. However, PPG signals collected from such devices often suffer from corruption caused by motion artifacts. This is typically addressed by combining the PPG signal with acceleration measurements from an inertial sensor. Recently, different energy-efficient deep learning approaches for heart rate estimation have been proposed. To test these new solutions, in this work, we developed a highly wearable platform (42mm x 48 mm x 1.2mm) for PPG signal acquisition and processing, based on GAP9, a parallel ultra low power system-on-chip featuring nine cores RISC-V compute cluster with neural network accelerator and 1 core RISC-V controller. The hardware platform also integrates a commercial complete Optical Biosensing Module and an ARM-Cortex M4 microcontroller unit (MCU) with Bluetooth low-energy connectivity. To demonstrate the capabilities of the system, a deep learning-based approach for PPG-based HR estimation has been deployed. Thanks to the reduced power consumption of the digital computational platform, the total power budget is just 2.67 mW providing up to 5 days of operation (105 mAh battery).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent advances in embedded systems world, lead us to more complex systems with application specific blocks (IP cores), the System on Chip (SoC) devices. A good example of these complex devices can be encountered in the cell phones that can have image processing cores, communication cores, memory card cores, and others. The need of augmenting systems’ processing performance with lowest power, leads to a concept of Multiprocessor System on Chip (MSoC) in which the execution of multiple tasks can be distributed along various processors. This thesis intends to address the creation of a synthesizable multiprocessing system to be placed in a FPGA device, providing a good flexibility to tailor the system to a specific application. To deliver a multiprocessing system, will be used the synthesisable 32-bit SPARC V8 compliant, LEON3 processor.