151 resultados para Multicopper oxidases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insect egg deposition activates plant defence, but very little is known about signalling events that control this response. In Arabidopsis thaliana, oviposition by Pieris brassicae triggers salicylic acid (SA) accumulation and induces the expression of defence genes. This is similar to the recognition of pathogen-associated molecular patterns (PAMPs), which are involved in PAMP-triggered immunity (PTI). Here, the involvement of known signalling components of PTI in response to oviposition was studied. Treatment with P. brassicae egg extract caused a rapid induction of early PAMP-responsive genes. In addition, expression of the defence gene PR-1 required EDS1, SID2, and, partially, NPR1, thus implicating the SA pathway downstream of egg recognition. PR-1 expression was triggered by a non-polar fraction of egg extract and by an oxidative burst modulated through the antagonistic action of EDS1 and NUDT7, but which did not depend on the NADPH oxidases RBOHD and RBOHF. Searching for receptors of egg-derived elicitors, a receptor-like kinase mutant, lecRK-I.8, was identified which shows a much reduced induction of PR-1 in response to egg extract treatment. These results demonstrate the importance of the SA pathway in response to egg-derived elicitor(s) and unravel intriguing similarities between the detection of insect eggs and PTI in Arabidopsis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In French Guiana, pyrethroids and organophosphates have been used for many years against Aedes aegypti. We aimed to establish both the resistance level of Ae. aegypti and the ultra low volume spray efficacy to provide mosquito control services with practical information to implement vector control and resistance management. Resistance to deltamethrin and fenitrothion was observed. In addition, the profound loss of efficacy of AquaK'othrine® and the moderate loss of efficacy of Paluthion® 500 were recorded. Fenitrothion remained the most effective candidate for spatial application in French Guiana until its removal in December 2010. Further investigation of the mechanism of resistance to deltamethrin demonstrated the involvement of mixed-function oxidases and, to a lesser extent, of carboxylesterases. However, these observations alone cannot explain the level of insecticide resistance we observed during tube and cage tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les poliamines (PAs) putrescina (Put), espermidina (Spd) i espermina (Spm) són mol•lècules policatiòniques de baix pes molecular, presents en els microorganismes, animals i plantes. Les PAs han estat implicades en diversos processos cel•lulars importants, incloent la resposta de les plantes a l'estrès. No obstant això, el seu mode d'acció està es desconeix. En les plantes, es van acumulant evidències de que les PAs interactuen amb macromolècules i estructures cel•lulars, com ara proteïnes de membrana, i la seva possible participació en transducció de senyals s'ha convertit en una creixent i interessant àrea d'estudi. En aquesta tesi, la possible interacció entre les poliamines i les vies de senyalització de fosfolípids és investigada. Resultats previs, han posat de manifest que alteracions en els nivells endògens de poliamines (PAs), per sobreexpressió gènica o pèrdua de funció de gens de biosíntesi, redueixen o milloren, respectivament, la capacitat de les plantes d'Arabidopsis per tolerar agressions per estrès abiòtic, produint en alguns casos notables alteracions en el desenvolupament. En aquestes plantes amb nivells alterats de PAs s'han detectat canvis importants en l'expressió gènica i s'ha trobat una connexió entre el contingut de PAs ii la biosíntesi / senyalització d'àcid abscísic (ABA). La hipòtesi actual de treball és que aquestes alteracions en l'expressió gènica poden estar mediades, si més no en part, pel catabolisme de PAs, i l’acció directa o indirecta de les espècies reactives d'oxigen (ROS) que se’n deriven.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was conducted to identify enzyme systems eventually catalysing a local cerebral metabolism of citalopram, a widely used antidepressant of the selective serotonin reuptake inhibitor type. The metabolism of citalopram, of its enantiomers and demethylated metabolites was investigated in rat brain microsomes and in rat and human brain mitochondria. No cytochrome P-450 mediated transformation was observed in rat brain. By analysing H2O2 formation, monoamine oxidase A activity in rat brain mitochondria could be measured. In rat whole brain and in human frontal cortex, putamen, cerebellum and white matter of five brains monoamine oxidase activity was determined by the stereoselective measurement of the production of citalopram propionate. All substrates were metabolised by both forms of MAO, except in rat brain, where monoamine oxidase B activity could not be detected. Apparent Km and Vmax of S-citalopram biotransformation in human frontal cortex by monoamine oxidase B were found to be 266 microM and 6.0 pmol min(-1) mg(-1) protein and by monoamine oxidase A 856 microM and 6.4 pmol min(-1) mg(-1) protein, respectively. These Km values are in the same range as those for serotonin and dopamine metabolism by monoamine oxidases. Thus, the biotransformation of citalopram in the rat and human brain occurs mainly through monoamine oxidases and not, as in the liver, through cytochrome P-450.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant strains of the oleaginous yeast Yarrowia lipolytica expressing the PHA synthase gene (PhaC) from Pseudomonas aeruginosa in the peroxisome were found able to produce polyhydroxyalkanoates (PHA). PHA production yield, but not the monomer composition, was dependent on POX genotype (POX genes encoding acyl-CoA oxidases) (Haddouche et al. FEMS Yeast Res 10:917-927, 2010). In this study of variants of the Y. lipolytica β-oxidation multifunctional enzyme, with deletions or inactivations of the R-3-hydroxyacyl-CoA dehydrogenase domain, we were able to produce hetero-polymers (functional MFE enzyme) or homo-polymers (with no 3-hydroxyacyl-CoA dehydrogenase activity) of PHA consisting principally of 3-hydroxyacid monomers (>80%) of the same length as the external fatty acid used for growth. The redirection of fatty acid flux towards β-oxidation, by deletion of the neutral lipid synthesis pathway (mutant strain Q4 devoid of the acyltransferases encoded by the LRO1, DGA1, DGA2 and ARE1 genes), in combination with variant expressing only the enoyl-CoA hydratase 2 domain, led to a significant increase in PHA levels, to 7.3% of cell dry weight. Finally, the presence of shorter monomers (up to 20% of the monomers) in a mutant strain lacking the peroxisomal 3-hydroxyacyl-CoA dehydrogenase domain provided evidence for the occurrence of partial mitochondrial β-oxidation in Y. lipolytica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A utilização de sinergistas é uma importante ferramenta para determinar os mecanismos envolvidos na resistência de insetos. Nesta pesquisa, o sinergista butóxido de piperonila (PBO) foi usado, em diferentes proporções, para avaliar a contribuição relativa de enzimas oxidases no metabolismo do inseticida organofosforado fenitrotiom e do piretróide deltametrina, em quatro populações de Oryzaephilus surinamensis: OS1 (suscetível) e OS2, OS3 e OS4 (resistentes). O sinergista aumentou, significativamente, a toxicidade da deltametrina nas populações resistentes, indicando que as oxidases exercem uma importante função na resistência a este inseticida. Para o fenitrotiom, o PBO apresentou um efeito antagonista, diminuindo significativamente a toxicidade do inseticida em todas as populações, indicando que este sinergista não é o mais apropriado para a mistura com compostos organofosforados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Em Cabo Verde, arquipélago situado na Costa Ocidental Africana, os primeiros casos de dengue ocorreram em 2009, com a notificação de mais de 21.000 casos, a maioria desses registrados na Ilha de Santiago. O mosquito Aedes aegypti foi identificado como vetor, e ações para seu controle, usando os inseticidas temephos (larvicida) e a deltametrina (adulticida), têm sido implementadas. Objetiva-se com esse trabalho avaliar o atual status de suscetibilidade a inseticidas e caracterizar os mecanismos de resistência nessa população. Amostras de A. aegypti da ilha de Santiago foram coletadas através de armadilhas de oviposição, para o estabelecimento de uma população a ser analisada. Foram realizados bioensaios do tipo dose diagnóstica, usando garrafas impregnadas com doses únicas dos adulticidas malathion (organofosforado), deltametrina (piretróide) e cipermetrina (piretróide), e bioensaios do tipo dose resposta, usando múltiplas concentrações dos inseticidas temephos (organofosforado), Bacillus thuringiensis sorovariedade israelensis (bactéria entomopatogênica) e diflubenzuron (inibidor de síntese de quitina). Para a investigação dos mecanismos de resistências, foram realizados testes bioquímicos com substratos específicos para quantificar a atividade das enzimas glutationa S-transferases, esterases (α, β e PNPA) e oxidases de função mista, ligadas a detoxificação de xenobióticos, e a taxa de inibição da acetilcolinesterase ligada a insensibilidade do sítio alvo. Pesquisou-se também a presença de mutaçõeso do tipo kdr (knock-down resistance) associadas à resistência a piretróides, pela análise da sequência dos exons 20 e 21 no gene do canal de sódio. Nos resultados dos bioensaios constatou-se que a população de A. aegypti investigada apresenta resistência aos piretróides deltametrina e cipermetrina (mortalidade <80%) e ao organofosforado temephos (RR90=4), mas é suscetível ao malathion (mortalidade ≥98%), Bacillus thuringiensis sorovariedade israelensis (RR90=0.8) e ao diflubenzuron (RR90=2,2). Em relação a atividade das enzimas ligadas ao processo de detoxificação, foram detectadas alterações nas glutationa S-transferases (25%), oxidases de função mista (18%), esterase-α (19%) e esterase- β (17%). A taxa de inibição da acetilcolinesterase (6%) e a atividade da esterase-PNPA (7%) mostraram que estas estão inalteradas. Nenhuma das mutações do tipo kdr pesquisadas foi detectada. Estes resultados permitem concluir que a população de A. aegypti da ilha de Santiago, Cabo Verde, é suscetível aos inseticidas, excetuando os piretróides testados e o temephos, usados no seu controle; e que ela apresenta alterações em enzimas detoxificadoras que poderão estar implicadas na resistência a esses compostos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aerobic respiration of Pseudomonas aeruginosa involves four terminal oxidases belonging to the heme-copper family (that is, three cytochrome c oxidases and one quinol oxidase) plus one copper-independent, cyanide-insensitive quinol oxidase (CIO). The PA0114 gene encoding an SCO1/SenC-type protein, which is known to be important for copper delivery to cytochrome c in yeast, Rhodobacter spp. and Agrobacterium tumefaciens, was found to be important for copper acquisition and aerobic respiration in P. aeruginosa. A PA0114 (senC) mutant grew poorly in low-copper media and had low cytochrome cbb(3)-type oxidase activity, but expressed CIO at increased levels, by comparison with the wild-type PAO1. Addition of copper reversed these phenotypes, suggesting that periplasmic copper capture by the SenC protein helps P. aeruginosa to adapt to copper deprivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A few bacterial species are known to produce and excrete hydrogen cyanide (HCN), a potent inhibitor of cytochrome c oxidase and several other metalloenzymes. In the producer strains, HCN does not appear to have a role in primary metabolism and is generally considered a secondary metabolite. HCN synthase of proteobacteria (especially fluorescent pseudomonads) is a membrane-bound flavoenzyme that oxidizes glycine, producing HCN and CO2. The hcnABC structural genes of Pseudomonas fluorescens and P. aeruginosa have sequence similarities with genes encoding various amino acid dehydrogenases/oxidases, in particular with nopaline oxidase of Agrobacterium tumefaciens. Induction of the hcn genes of P. fluorescens by oxygen limitation requires the FNR-like transcriptional regulator ANR, an ANR recognition sequence in the -40 region of the hcn promoter, and nonlimiting amounts of iron. In addition, expression of the hcn genes depends on a regulatory cascade initiated by the GacS/GacA (global control) two-component system. This regulation, which is typical of secondary metabolism, manifests itself during the transition from exponential to stationary growth phase. Cyanide produced by P. fluorescens strain CHA0 has an ecological role in that this metabolite accounts for part of the biocontrol capacity of strain CHA0, which suppresses fungal diseases on plant roots. Cyanide can also be a ligand of hydrogenases in some anaerobic bacteria that have not been described as cyanogenic. However, in this case, as well as in other situations, the physiological function of cyanide is unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The precise localization of extracellular matrix and cell wall components is of critical importance for multicellular organisms. Lignin is a major cell wall modification that often forms intricate subcellular patterns that are central to cellular function. Yet the mechanisms of lignin polymerization and the subcellular precision of its formation remain enigmatic. Here, we show that the Casparian strip, a lignin-based, paracellular diffusion barrier in plants, forms as a precise, median ring by the concerted action of a specific, localized NADPH oxidase, brought into proximity of localized peroxidases through the action of Casparian strip domain proteins (CASPs). Our findings in Arabidopsis provide a simple mechanistic model of how plant cells regulate lignin formation with subcellular precision. We speculate that scaffolding of NADPH oxidases to the downstream targets of the reactive oxygen species (ROS) that they produce might be a widespread mechanism to ensure specificity and subcellular precision of ROS action within the extracellular matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Copper is an important trace element and micronutrient for living organisms as it is the cofactor of several enzymes involved in diverse biological redox processes such as aerobic respiration, denitrification and photosynthesis. Despite its importance, copper may be poorly bioavailable in soils and aquatic environments, as well as in the human body, especially at physiological or alkaline pH. In this work, we have investigated the strategies that the versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa has evolved to face and overcome copper limitation. The global response of the P. aeruginosa to copper limitation was assessed under aerobic conditions. Numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were down-regulated whereas expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was up-regulated. Wild type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper by a copper chelator, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA'-'lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases. These results suggest that the CioAB enzyme can be used as a by-pass strategy to overcome severe copper limitation and perform aerobic respiration even if virtually no copper is available. The PA0114 gene, which encodes a protein of the SCOT/SenC family, was found to be important for copper acquisition and aerobic respiration in low copper conditions. A PA0114 (sent) mutant grew poorly in low copper media and had low terminal oxidase activity with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine), but expressed the CioAB enzyme at elevated levels. Addition of copper reversed these phenotypes, suggesting that periplasmic copper capture by the SenC protein is another strategy that helps P. aeruginosa to adapt to copper deprivation. RESUME Le cuivre est un micronutriment important pour les organismes vivants. Il représente le cofacteur de plusieurs enzymes impliquées dans une multitude de processus biologiques tels que la respiration aérobie, la dénitrification et la photosynthèse. Malgré son importance, le cuivre peut être peu disponible dans les sols, les environnements aquatiques et le corps humain, spécialement à pH physiologique ou alcalin. Dans ce travail nous avons étudié les stratégies développées par la bactérie pathogène opportuniste Pseudomonas aeruginosa PAO1 afm de faire face et de surmonter le manque de cuivre. La réponse globale de P. aeruginosa à la carence de cuivre a été analysée dans des conditions aérobie. Les résultats obtenus ont montré que plusieurs gènes impliqués dans l'acquisition du fer, tels que les gènes codant pour les sidérophores (pyoverdine et pyochéline), étaient réprimés, tandis que l'expression de l'opéron cioAB, codant pour l'oxydase terminale insensible au cyanure (CIO), était augmentée. La souche sauvage P. aeruginosa est capable de croître dans un milieu où la concentration en cuivre est limitée, due à la présence d'un chélateur spéciftque de cuivre, tandis que le mutant cioAB ne croît pas dans ces conditions. Nous avons conclu que P. aeruginosa nécessite l'oxydase terminale CIO pour faire face à la carence en cuivre. Un quadruple mutant affecté dans toutes les oxydases dépendantes du cuivre (cyo ccol cco2 cox) et appartenant aux oxydases de type hème-cuivre, peut croître en aérobie, néanmoins plus lentement que la souche sauvage, ce qui montre que l'enzyme CIO est capable de conserver l'énergie. L'expression de la fusion rapportrice cioA'-'IacZ chez le quadruple mutant est moins dépendante de la disponibilité de cuivre que chez la souche sauvage. Ces résultats suggèrent que la disponibilité de cuivre influence l'expression de cioAB d'une façon indirecte, par le biais des oxydases terminales de type héme-cuivre. Il est donc possible qu'en cas de carence de cuivre, P. aeruginosa utilise l'enzyme CIO comme stratégie afin de surmonter ce manque et de réaliser la respiration aérobie. Nous avons démontré que le gène PA0114, codant pour une protéine appartenant à la famille SCO1/SenC, est important dans l'acquisition et dans la respiration aérobie dans des environnements où le cuivre est présent en faible concentration. En ces conditions, la croissance du mutant senC est faible; de plus, l'activité des oxydases terminales en présence du donneur d'électrons TMPD (N,N,N,N'-tetraméthyl-p-phénylenediamine) est basse. Toutefois, l'addition de cuivre au milieu de culture permet de restaurer le phénotype du type sauvage. Ces résultats montrent que la protéine SenC est capable d'acquérir le cuivre et représente donc une autre stratégie chez P. aeruginosa pour s'adapter à un manque de cuivre.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Restricted bioavailability of copper in certain environments can interfere with cellular respiration because copper is an essential cofactor of most terminal oxidases. The global response of the metabolically versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa to copper limitation was assessed under aerobic conditions. Expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was upregulated, whereas numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were expressed at reduced levels, presumably reflecting a lower demand for iron by respiratory enzymes. Wild-type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA'-'lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spanish Cydia pomonella (L.) field populations have developed resistance to several insecticide groups. Diagnostic concentrations were established as the LC90 calculated on a susceptible strain (S_Spain) for five and seven insecticides and tested on eggs and neonate larvae field populations, respectively. The three most relevant enzymatic detoxification systems (mixed-function oxidases (MFO), glutathione S-tranferases (GST) and esterases (EST)) were studied for neonate larvae. In eggs, 96% of the field populations showed a significantly lower efficacy when compared with the susceptible strain (S_Spain) and the most effective insecticides were fenoxycarb and thiacloprid. In neonate larvae, a significant loss of susceptibility to the insecticides was detected. Flufenoxuron, azinphos-methyl and phosmet showed the lowest efficacy, while lambda-cyhalothrin, alpha-cypermethrin and chlorpyrifos-ethyl showed the highest. Biochemical assays showed that the most important enzymatic system involved in insecticide detoxification was MFO, with highest enzymatic activity ratios (5.1–16.6 for neonates from nine field populations). An enhanced GST and EST activities was detected in one field population, with enzymatic activity ratios of threefold and fivefold for GST and EST, respectively, when compared with the susceptible strain. The insecticide bioassays showed that the LC90 used were effective as diagnostic concentrations. Measures of MFO activity alongside bioassays with insecticide diagnostic concentrations could be used as tools for monitoring insecticide resistance in neonate larvae of C. pomonella.