881 resultados para Multi-objective genetic algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A genetic algorithm (GA) is employed for the multi-objective shape optimization of the nose of a high-speed train. Aerodynamic problems observed at high speeds become still more relevant when traveling along a tunnel. The objective is to minimize both the aerodynamic drag and the amplitude of the pressure gradient of the compression wave when a train enters a tunnel. The main drawback of GA is the large number of evaluations need in the optimization process. Metamodels-based optimization is considered to overcome such problem. As a result, an explicit relationship between pressure gradient and geometrical parameters is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuning compilations is the process of adjusting the values of a compiler options to improve some features of the final application. In this paper, a strategy based on the use of a genetic algorithm and a multi-objective scheme is proposed to deal with this task. Unlike previous works, we try to take advantage of the knowledge of this domain to provide a problem-specific genetic operation that improves both the speed of convergence and the quality of the results. The evaluation of the strategy is carried out by means of a case of study aimed to improve the performance of the well-known web server Apache. Experimental results show that a 7.5% of overall improvement can be achieved. Furthermore, the adaptive approach has shown an ability to markedly speed-up the convergence of the original strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of fault tolerant systems is gaining importance in large domains of embedded applications where design constrains are as important as reliability. New software techniques, based on selective application of redundancy, have shown remarkable fault coverage with reduced costs and overheads. However, the large number of different solutions provided by these techniques, and the costly process to assess their reliability, make the design space exploration a very difficult and time-consuming task. This paper proposes the integration of a multi-objective optimization tool with a software hardening environment to perform an automatic design space exploration in the search for the best trade-offs between reliability, cost, and performance. The first tool is commanded by a genetic algorithm which can simultaneously fulfill many design goals thanks to the use of the NSGA-II multi-objective algorithm. The second is a compiler-based infrastructure that automatically produces selective protected (hardened) versions of the software and generates accurate overhead reports and fault coverage estimations. The advantages of our proposal are illustrated by means of a complex and detailed case study involving a typical embedded application, the AES (Advanced Encryption Standard).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new second-order method of texture analysis called Adaptive Multi-Scale Grey Level Co-occurrence Matrix (AMSGLCM), based on the well-known Grey Level Co-occurrence Matrix (GLCM) method. The method deviates significantly from GLCM in that features are extracted, not via a fixed 2D weighting function of co-occurrence matrix elements, but by a variable summation of matrix elements in 3D localized neighborhoods. We subsequently present a new methodology for extracting optimized, highly discriminant features from these localized areas using adaptive Gaussian weighting functions. Genetic Algorithm (GA) optimization is used to produce a set of features whose classification worth is evaluated by discriminatory power and feature correlation considerations. We critically appraised the performance of our method and GLCM in pairwise classification of images from visually similar texture classes, captured from Markov Random Field (MRF) synthesized, natural, and biological origins. In these cross-validated classification trials, our method demonstrated significant benefits over GLCM, including increased feature discriminatory power, automatic feature adaptability, and significantly improved classification performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of finished products from depots to customers is a practical and challenging problem in logistics management. Better routing and scheduling decisions can result in higher level of customer satisfaction because more customers can be served in a shorter time. The distribution problem is generally formulated as the vehicle routing problem (VRP). Nevertheless, there is a rigid assumption that there is only one depot. In cases, for instance, where a logistics company has more than one depot, the VRP is not suitable. To resolve this limitation, this paper focuses on the VRP with multiple depots, or multi-depot VRP (MDVRP). The MDVRP is NP-hard, which means that an efficient algorithm for solving the problem to optimality is unavailable. To deal with the problem efficiently, two hybrid genetic algorithms (HGAs) are developed in this paper. The major difference between the HGAs is that the initial solutions are generated randomly in HGA1. The Clarke and Wright saving method and the nearest neighbor heuristic are incorporated into HGA2 for the initialization procedure. A computational study is carried out to compare the algorithms with different problem sizes. It is proved that the performance of HGA2 is superior to that of HGA1 in terms of the total delivery time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transportation service operators are witnessing a growing demand for bi-directional movement of goods. Given this, the following thesis considers an extension to the vehicle routing problem (VRP) known as the delivery and pickup transportation problem (DPP), where delivery and pickup demands may occupy the same route. The problem is formulated here as the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), which requires the concurrent service of the demands at the customer location. This formulation provides the greatest opportunity for cost savings for both the service provider and recipient. The aims of this research are to propose a new theoretical design to solve the multi-objective VRPSDP, provide software support for the suggested design and validate the method through a set of experiments. A new real-life based multi-objective VRPSDP is studied here, which requires the minimisation of the often conflicting objectives: operated vehicle fleet size, total routing distance and the maximum variation between route distances (workload variation). The former two objectives are commonly encountered in the domain and the latter is introduced here because it is essential for real-life routing problems. The VRPSDP is defined as a hard combinatorial optimisation problem, therefore an approximation method, Simultaneous Delivery and Pickup method (SDPmethod) is proposed to solve it. The SDPmethod consists of three phases. The first phase constructs a set of diverse partial solutions, where one is expected to form part of the near-optimal solution. The second phase determines assignment possibilities for each sub-problem. The third phase solves the sub-problems using a parallel genetic algorithm. The suggested genetic algorithm is improved by the introduction of a set of tools: genetic operator switching mechanism via diversity thresholds, accuracy analysis tool and a new fitness evaluation mechanism. This three phase method is proposed to address the shortcoming that exists in the domain, where an initial solution is built only then to be completely dismantled and redesigned in the optimisation phase. In addition, a new routing heuristic, RouteAlg, is proposed to solve the VRPSDP sub-problem, the travelling salesman problem with simultaneous delivery and pickup (TSPSDP). The experimental studies are conducted using the well known benchmark Salhi and Nagy (1999) test problems, where the SDPmethod and RouteAlg solutions are compared with the prominent works in the VRPSDP domain. The SDPmethod has demonstrated to be an effective method for solving the multi-objective VRPSDP and the RouteAlg for the TSPSDP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a simulated genetic algorithm (GA) model of scheduling the flow shop problem with re-entrant jobs. The objective of this research is to minimize the weighted tardiness and makespan. The proposed model considers that the jobs with non-identical due dates are processed on the machines in the same order. Furthermore, the re-entrant jobs are stochastic as only some jobs are required to reenter to the flow shop. The tardiness weight is adjusted once the jobs reenter to the shop. The performance of the proposed GA model is verified by a number of numerical experiments where the data come from the case company. The results show the proposed method has a higher order satisfaction rate than the current industrial practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selection of a set of requirements between all the requirements previously defined by customers is an important process, repeated at the beginning of each development step when an incremental or agile software development approach is adopted. The set of selected requirements will be developed during the actual iteration. This selection problem can be reformulated as a search problem, allowing its treatment with metaheuristic optimization techniques. This paper studies how to apply Ant Colony Optimization algorithms to select requirements. First, we describe this problem formally extending an earlier version of the problem, and introduce a method based on Ant Colony System to find a variety of efficient solutions. The performance achieved by the Ant Colony System is compared with that of Greedy Randomized Adaptive Search Procedure and Non-dominated Sorting Genetic Algorithm, by means of computational experiments carried out on two instances of the problem constructed from data provided by the experts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in energy technology generation and new directions in electricity regulation have made distributed generation (DG) more widespread, with consequent significant impacts on the operational characteristics of distribution networks. For this reason, new methods for identifying such impacts are needed, together with research and development of new tools and resources to maintain and facilitate continued expansion towards DG. This paper presents a study aimed at determining appropriate DG sites for distribution systems. The main considerations which determine DG sites are also presented, together with an account of the advantages gained from correct DG placement. The paper intends to define some quantitative and qualitative parameters evaluated by Digsilent (R), GARP3 (R) and DSA-GD software. A multi-objective approach based on the Bellman-Zadeh algorithm and fuzzy logic is used to determine appropriate DG sites. The study also aims to find acceptable DG locations both for distribution system feeders, as well as for nodes inside a given feeder. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.