971 resultados para Multi-nitrogen heterocyclic metal complexes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six metal complexes of Schiff bases involving Vitamin B6 and the decarboxylated amino acid histamine have been synthesised and characterized. Crystal structures have been determined for [CuL1(H2O)Br]-NO31(L1= pyridoxylidenehistamine) and [Cu2L22(NO3)2]·6H2O 2(L2= 5′-phosphopyridoxylidenehistaminate). The crystal structure of complex 1[space group P[1 with combining macron], a= 8.161(2), b= 10.368(2), c= 11.110(2)Å, α= 105.18(1), β= 102.12(1), γ= 72.10(1)° and Z= 2; R= 0.072, R′= 0.083] consists of square-pyramidally co-ordinated copper with the tridentate Schiff base in the zwitterionic form, whereas in 2[space group P[1 with combining macron], a= 8.727(1), b= 10.308(1), c= 12.845(2)Å, α= 110.00(1), β= 78.94(1), γ= 114.35(1)° and Z= 1; R= 0.035, R′= 0.034] the copper has the same co-ordination geometry but the tetradentate Schiff-base ligand exists as a monoanion. The conformational parameters deduced from such structures are important for understanding the stereochemical aspects of Vitamin B6-catalysed model reactions involving histidine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transitions from the low-to the high-spin state in Fe2+ and Co3+ compounds have been examined by X-ray and UV photoelectron spectroscopy. It has been shown that the core-level bands in XPES, in particular the metal 3s band, as well as the valence bands, are diagnosis in the study of spin-state transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrolysis reactions of organometallic ruthenium(II) piano-stool complexes of the type Ru-II(eta(6)-cymene)(L)Cl](0/+) (1-5, where L = kappa(1)- or kappa(2)-1,1-bis(diphenylphosphino)methane,1,1bis-(diphenylphosphino)methane oxide, kappa(1)-mercaptobenzothiazole) have been studied using density functional theory at the B3LYP level. In addition to considering a syn attack in an associative fashion, where the nucleophile approaches from the same side as the leaving group, we have explored alternative paths such as an anti attack in an associative manner, where the nucleophile attacks from the opposite side of the leaving group. During the anti attack, an intermediate is formed and there is a coordination mode change of the arene ring from eta(6) to eta(2) along with its rotation. When the intermediate goes to the product, the arene ring slips back from eta(2) to eta(6) coordination. This coordinated movement of the arene ring makes the associative anti attack an accessible pathway for the substitution process. Our calculations predict very similar activation barriers for both syn and anti attacks. In the dissociative path, the rate-determining step is the generation of a coordinatively unsaturated 16-electron ruthenium species. This turns out to be viable once solvent effects are included. The large size of the ancillary ligands on Ru makes the dissociative process as favorable as the associative process. Activation energy calculations reveal that although the dissociative path is favorable for kappa(1) complexes, both dissociative and associative processes can have significant contribution to the hydrolysis reaction in kappa(2) complexes. Once activated by hydrolysis, these complexes react with guanine and adenine bases of DNA. The thermodynamic stabilities of complexes formed with the nucleobases are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New chiral diphosphazane ligands of the type Ph(2)PN(S-*CHMePh)PYY' {YY'= Ph(2) (2), O2C6H4 (3); Y= Ph, Y'= Cl {4a (SS), 4b (SR)}, N(2)C(3)HMe(2)-3,5 {5a (SR), 5b (SS)} are synthesised starting from a chiral aminophosphine, Ph(2)PNH(S-*CHMePh) (1). The structure of one of the diastereomer 5a has been confirmed by single crystal X-ray diffraction {Orthorhombic system, P2(1)2(1)2(1); a=10.456 (4), b=15.362 (7), c=17.379 (6) Angstrom, Z=4}. Transition metal mononuclear complexes [Rh{eta(2)-(Ph(2)P)(2)N- (S-*CHMePh)}(2)](+)(BF4)(-) (6), [PdCl2{eta(2)-(Ph(2)P)(2)N(S-*CHMePh)}] (7) and [PtCl2{eta(2)-(Ph(2)P)(2)N- (S-*CHMePh)}] (8) have also been synthesised. The structure of the palladium complex 7 is solved by X-ray crystallography {Orthorhombic system, P2(1)2(1)2(1); a=8.746 (2), b=18.086 (2), c=20.811 (3) Angstrom, Z=4}. All these compounds are characterised by micro analyses, IR and NMR spectroscopic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the synthesis, characterization and studies of dendrimers possessing an amino acid-metal complex as the core. Using Frechet-type polyaryl ether dendrons, L-tyrosine-metal (Zn-II and Co-II) complex cored dendrimers of 0-4 generations were synthesized. The metal complexation of the tyrosine unit at the focal point of these dendrons took place smoothly, in excellent yields, even though the sizes of the dendrons increase as the generations advance. Spectrophotometric titrations with CoII metal ion confirmed the formation of a 2 : 1 dendritic ligand to metal complex and the existence of a pseudotetrahedral geometry at the metal centre is also inferred. Cyclic voltammetric studies of dendrimer-Co-II complexes showed that while the electron transfer of Co-II to Co-I was facile for generations 0-2, such a process was difficult with generations 3 and 4, indicating a rigid encapsulation of the metal ion centre by proximal dendron groups. Further reduction of Co-I to Co-0 and the corresponding oxidation processes appear to be limited by adsorption at the surfaces of the electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferrocenyl terpyridine 3d metal complexes and their analogues, viz. [M(Fc-tpy)(2)](ClO(4))(2) (1-4), [Zn(Ph-tpy)(2)](ClO(4))(2) (5) and [Zn(Fc-dpa)(2)]X(2) (X = ClO(4), 6; PF6, 6a), where M = Fe(II) in 1, Co(II) in 2, Cu(II) in 3 and Zn(II) in 4, Fc-tpy is 4'-ferrocenyl-2,2': 6', 2 `'-terpyridine, Ph-tpy is 4'-phenyl-2,2': 6', 2 `'-terpyridine and Fc-dpa is ferrocenyl-N,N-dipicolylmethanamine, are prepared and their DNA binding and photocleavage activity in visible light studied. Complexes 2, 4, 5 and 6a that are structurally characterized by X-ray crystallography show distorted octahedral geometry with the terpyridyl ligands binding to the metal in a meridional fashion, with Fc-dpa in 6a showing a facial binding mode. The Fc-tpy complexes display a charge transfer band in the visible region. The ferrocenyl (Fc) complexes show a quasi-reversible Fc(+)-Fc redox couple within 0.48 to 0.66 V vs. SCE in DMF-0.1 M TBAP. The DNA binding constants of the complexes are similar to 10(4) M(-1). Thermal denaturation and viscometric data suggest DNA surface binding through electrostatic interaction by the positively charged complexes. Barring the Cu(II) complex 3, the complexes do not show any chemical nuclease activity in the presence of glutathione. Complexes 1-4 exhibit significant plasmid DNA photocleavage activity in visible light via a photoredox pathway. Complex 5, without the Fc moiety, does not show any DNA photocleavage activity. The Zn(II) complex 4 shows a significant PDT effect in HeLa cancer cells giving an IC(50) value of 7.5 mu M in visible light, while being less toxic in the dark (IC(50) = 49 mu M).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition metal complexes of salicylhydrazone of anthranilhydrazide (H2L) were synthesised. The structures of metal complexes were characterized by various spectroscopic [IR, NMR, UV-Vis, EPR], thermal and other physicochemical methods. The single-crystal X-ray diffraction study of [Cu(HL)Cl]center dot H2O reveal its orthorhombic system with space group P2(1)2(1)2 and Z=4. The copper center has a distorted square planar geometry with ONO and Cl as the donor atoms. The ligand and its metal chelates have been screened for their antimicrobial and anti-tubercular activities using serial dilution method. Metal complexes in general have exhibited better antibacterial and antifungal activity than the free ligand and in few cases better than the standard used. Among the bacterial strains used, the complexes are highly potent against Gram-positive strains compared to Gram-negative. Anti-tubercular activity exhibited by the Co(II) complex is comparable with the standard used. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we present the syntheses, characterizations, magnetic and luminescence properties of five 3d-metal complexes, Co(tib)(1,2-phda)](n)center dot(H2O)(n) (1), Co-3(tib)(2)(1,3-phda)(3)(H2O)](n)center dot(H2O)(2n) (2), Co-5(tib)(3)(1,4-phda)(5)(H2O)(3)](n)center dot(H2O)(7n) (3), Zn-3(tib)(2)(1,3-phda)(3)](n)center dot(H2O)(4n) (4), and Mn(tib)(2)(H2O)(2)](n)center dot(1,4-phdaH)(2n)center dot(H2O)(4n) (5), obtained from the use of isomeric phenylenediacetates (phda) and the neutral 1,3,5-tris(1-imidazolyl)benzene (tib) ligand. Single crystal X-ray structures showed that 1 constitutes 3,5-connected 2-nodal nets with a double-layered two-dimensional (2D) structure, while 2 forms an interpenetrated 2D network (3,4-connected 3-nodal net). Complex 3 has a complicated three-dimensional structure with 10-nodal 3,4,5-connected nets. Complex 4, although it resembles 2 in stoichiometry and basic building structures, forms a very different overall 2D assembly. In complex 5 the dicarboxylic acid, upon losing only one of the acidic protons, does not take part in coordination; instead it forms a complicated hydrogen bonding network with water molecules. Magnetic susceptibility measurements over a wide range of temperatures revealed that the metal ions exchange very poorly through the tib ligand, but for the Co(II) complexes the effects of nonquenched orbital contributions are prominent. The 3d(10) metal complex 4 showed strong luminescence with lambda(max) = 415 nm (lambda(ex) = 360 nm).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONSPECTUS: Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-kappa B besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and damaging the cancer cells on photoactivation in visible light while being minimally toxic in darkness. In this Account, we have made an attempt to review the current status of the chemistry of metal curcumin complexes and present results from our recent studies on curcumin complexes showing remarkable in vitro photocytotoxicity. The undesirable dark toxicity of the complexes can be reduced with suitable choice of the metal and the ancillary ligands in a ternary structure. The complexes can be directed to specific subcellular organelles. Selectivity by targeting cancer cells over normal cells can be achieved with suitable ligand design. We expect that this methodology is likely to provide an impetus toward developing curcumin-based photochemotherapeutics for anticancer treatment and cure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The condensation of phenanthroline-5,6-dione (phendione) with polyamines is a versatile synthetic route to a wide variety of chelating ligands. Condensation with 2,3- napthalene diamine gives benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (bdppz) a ligand containing weakly-coupled orbitals of benzophenazine (bpz) and 2,2' -bipyridinde(bpy) character. The bpy character gives Re and Ru complexes excited-state redox properties; intramolecular electron transfer (ET) takes place to the bpz portion of the ligand. The charge-separated state so produced has an extraordinarily-long 50 µs lifetime. The slow rate of charge recombination arises from a combination of extremely weak coupling between the metal center and the bpz acceptor orbital and Marcus "inverted region" behavior. Molecular orbital calculations show that only 3% the electron density in the lowest unoccupied molecular orbital lies on the bpy atoms of bdppz, effectively trapping the transferred electron on the bpz portion. The rate of charge recombination decreases with increasing driving force, showing that these rates lie in the inverted region. Comparison of forward and back ET rates shows that donor-acceptor coupling is four orders of magnitude greater for photoinduced electron transfer than it is for thermal charge recombination.

Condensation of phendione with itself or tetramines gives a series of binucleating tetrapyridophenazine ligands of incrementally-varying coordination-site separation. When a photoredox-active metal center is attached, excited-state energy and electron transfer to an acceptor metal center at the other coordination site can be studied as a function of distance. A variety of monometallic and homo- and heterodimetallic tetrapyridophenazine complexes has been synthesized. Electro- and magnetochemistry show that no ground-state interaction exists between the metals in bimetallic complexes. Excited-state energy and electron transfer, however, takes place at rates which are invariant with increasing donor-acceptor separation, indicating that a very efficient coupling mechanism is at work. Theory and experiment have suggested that such behavior might exist in extended π-systems like those presented by these ligands.

Condensation of three equivalents of 4,5-dimethyl-1,2-phenylenediamine with hexaketocyclohexane gives the trinucleating ligand hexaazahexamethyltrinapthalene (hhtn). Attaching two photredox-active metal centers and a third catalytic center to hhtn provides means by which multielectron photocatalyzed reactions might be carried out. The coordination properties of hhtn have been examined; X-ray crystallographic structure determination shows that the ligand's constricted coordination pocket leads to distorted geometries in its mono- and dimetallic derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation is mainly divided into two sub-parts: organometallic and bioinorganic/materials projects. The approach for the projects involves the use of two different multinucleating ligands to synthesize mono- and multinuclear complexes. Chapter 2 describes the synthesis of a multinucleating tris(phosphinoaryl)benzene ligand used to support mono-nickel and palladium complexes. The isolated mononuclear complexes were observed to undergo intramolecular arene C¬–H to C–P functionalization. The transformation was studied by nuclear magnetic resonance spectroscopy and X-ray crystallography, and represents a rare type of C–H functionalization mechanism, facilitated by the interactions of the group 10 metal with the arene π–system.

Chapter 3 describes the construction of multinickel complexes supported by the same triphosphine ligand from Chapter 2. This chapter shows how the central arene in the ligand’s triarylbenzene framework can interact with dinickel and trinickel moieties in various binding modes. X-ray diffraction studies indicated that all compounds display strong metal–arene interactions. A cofacial triangulo nickel(0) complex supported by this ligand scaffold was also isolated and characterized. This chapter demonstrates the use of an arene as versatile ligand design element for small molecular clusters.

Chapter 4 presents the syntheses of a series of discrete mixed transition metal Mn oxido clusters and their characterization. The synthesis of these oxide clusters displaying two types of transition metals were targeted for systematic metal composition-property studies relevant to mixed transition metal oxides employed in electrocatalysis. A series of heterometallic trimanganese tetraoxido cubanes capped with a redox-active metal [MMn3O4] (M = Fe, Co, Ni, Cu) was synthesized starting from a [CaMn3O4] precursor and structurally characterized by X-ray crystallography and anomalous diffraction to conclusively determine that M is incorporated at a single position in the cluster. The electrochemical properties of these complexes were studied via cyclic voltammetry. The redox chemistry of the series of complexes was investigated by the addition of a reductant and oxidant. X-ray absorption and electron paramagnetic resonance spectroscopies were also employed to evaluate the product of the oxidation/reduction reaction to determine the site of electron transfer given the presence of two types of redox-active metals. Additional studies on oxygen atom transfer reactivities of [MMn3O4] and [MMn3O2] series were performed to investigate the effect of the heterometal M in the reaction rates.

Chapter 5 focuses on the use of [CoMn3O4] and [NiMn3O4] cubane complexes discussed in Chapter 4 as precursors to heterogeneous oxygen evolution reaction (OER) electrocatalysts. These well-defined complexes were dropcasted on electrodes with/without heat treatment, and the OER activities of the resulting films were evaluated. Multiple spectroscopic techniques were performed on the surface of the electrocatalysts to gain insight into the structure-function relationships based on the heterometallic composition. Depending on film preparation, the Co-Mn-oxide was found to change metal composition during catalysis, while the Ni-Mn oxide maintained the NiMn3 ratio. These studies represent the use of discrete heterometallic-oxide clusters as precursors for heterogeneous water oxidation catalysts.

Appendix A describes the ongoing effort to synthesize a series of heteromultimetallic [MMn3X] clusters (X = O, S, F). Complexes such as [ZnMn3O], [CoMn3O], [Mn3S], and [Mn4F] have been synthesized and structurally characterized. An amino-bis-oxime ligand (PRABO) has been installed on the [ZnMn3O] cluster. Upon the addition of O2, the desymmetrized [ZnMn3O] cluster only underwent an outer-sphere, one-electron oxidation. Efforts to build and manipulate other heterometallic [MMn3X] clusters are still ongoing, targeting O2 binding and reduction. Appendix B summarizes the multiple synthetic approaches to build a [Co4O4]-cubane complex relevant to heterogeneous OER electrocatalysis. Starting with the tricobalt cluster [LCo3(O2CR)3] and treatment various strong oxidants that can serve as oxygen atom source in the presence Co2+ salt only yielded tricobalt mono–oxo complexes. Appendix C presents the efforts to model the H-cluster framework of [FeFe]-hydrogenase by incorporating a synthetic diiron complex onto a protein-supported or a synthetic ligand-supported [Fe4S4]-cluster. The mutant ferredoxin with a [Fe4S4]-cluster and triscarbene ligand have been characterized by multiple spectroscopic techniques. The reconstruction of an H-cluster mimic has not yet been achieved, due to the difficulty of obtaining crystallographic evidence and the ambiguity of the EPR results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and reactivity of a series of sodium and rare-earth metal complexes stabilized by a dianionic N-aryloxo-functionalized beta-ketoiminate ligand were presented. The reaction of acetylacetone with 1 equiv of 2-amino-4-methylphenol in absolute ethanol gave the compound 4-(2-hydroxy-5-methylphenyl)imino-2-pentanone (LH2, 1) in high yield.