852 resultados para Multi-Objective Optimization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal allocation of water resources for various stakeholders often involves considerable complexity with several conflicting goals, which often leads to multi-objective optimization. In aid of effective decision-making to the water managers, apart from developing effective multi-objective mathematical models, there is a greater necessity of providing efficient Pareto optimal solutions to the real world problems. This study proposes a swarm-intelligence-based multi-objective technique, namely the elitist-mutated multi-objective particle swarm optimization technique (EM-MOPSO), for arriving at efficient Pareto optimal solutions to the multi-objective water resource management problems. The EM-MOPSO technique is applied to a case study of the multi-objective reservoir operation problem. The model performance is evaluated by comparing with results of a non-dominated sorting genetic algorithm (NSGA-II) model, and it is found that the EM-MOPSO method results in better performance. The developed method can be used as an effective aid for multi-objective decision-making in integrated water resource management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pile reuse has become an increasingly popular option in foundation design, mainly due to its potential cost and environmental benefits and the problem of underground congestion in urban areas. However, key geotechnical concerns remain regarding the behavior of reused piles and the modeling of foundation systems involving old and new piles to support building loads of the new structure. In this paper, a design and analysis tool for pile reuse projects will be introduced. The tool allows coupling of superstructure stiffness with the foundation model, and includes an optimization algorithm to obtain the best configuration of new piles to work alongside reused piles. Under the concept of Pareto Optimality, multi-objective optimization analyses can also reveal the relationship between material usage and the corresponding foundation performance, providing a series of reuse options at various foundation costs. The components of this analysis tool will be discussed and illustrated through a case history in London, where 110 existing piles are reused at a site to support the proposed new development. The case history reveals the difficulties faced by foundation reuse in urban areas and demonstrates the application of the design tool to tackle these challenges. © ASCE 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today's feature-rich multimedia products require embedded system solution with complex System-on-Chip (SoC) to meet market expectations of high performance at a low cost and lower energy consumption. The memory architecture of the embedded system strongly influences these parameters. Hence the embedded system designer performs a complete memory architecture exploration. This problem is a multi-objective optimization problem and can be tackled as a two-level optimization problem. The outer level explores various memory architecture while the inner level explores placement of data sections (data layout problem) to minimize memory stalls. Further, the designer would be interested in multiple optimal design points to address various market segments. However, tight time-to-market constraints enforces short design cycle time. In this paper we address the multi-level multi-objective memory architecture exploration problem through a combination of Multi-objective Genetic Algorithm (Memory Architecture exploration) and an efficient heuristic data placement algorithm. At the outer level the memory architecture exploration is done by picking memory modules directly from a ASIC memory Library. This helps in performing the memory architecture exploration in a integrated framework, where the memory allocation, memory exploration and data layout works in a tightly coupled way to yield optimal design points with respect to area, power and performance. We experimented our approach for 3 embedded applications and our approach explores several thousand memory architecture for each application, yielding a few hundred optimal design points in a few hours of computation time on a standard desktop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates a new approach for point matching in multi-sensor satellite images. The feature points are matched using multi-objective optimization (angle criterion and distance condition) based on Genetic Algorithm (GA). This optimization process is more efficient as it considers both the angle criterion and distance condition to incorporate multi-objective switching in the fitness function. This optimization process helps in matching three corresponding corner points detected in the reference and sensed image and thereby using the affine transformation, the sensed image is aligned with the reference image. From the results obtained, the performance of the image registration is evaluated and it is concluded that the proposed approach is efficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates a novel approach for point matching of multi-sensor satellite imagery. The feature (corner) points extracted using an improved version of the Harris Corner Detector (HCD) is matched using multi-objective optimization based on a Genetic Algorithm (GA). An objective switching approach to optimization that incorporates an angle criterion, distance condition and point matching condition in the multi-objective fitness function is applied to match corresponding corner-points between the reference image and the sensed image. The matched points obtained in this way are used to align the sensed image with a reference image by applying an affine transformation. From the results obtained, the performance of the image registration is evaluated and compared with existing methods, namely Nearest Neighbor-Random SAmple Consensus (NN-Ran-SAC) and multi-objective Discrete Particle Swarm Optimization (DPSO). From the performed experiments it can be concluded that the proposed approach is an accurate method for registration of multi-sensor satellite imagery. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many real-world optimization problems contain multiple (often conflicting) goals to be optimized concurrently, commonly referred to as multi-objective problems (MOPs). Over the past few decades, a plethora of multi-objective algorithms have been proposed, often tested on MOPs possessing two or three objectives. Unfortunately, when tasked with solving MOPs with four or more objectives, referred to as many-objective problems (MaOPs), a large majority of optimizers experience significant performance degradation. The downfall of these optimizers is that simultaneously maintaining a well-spread set of solutions along with appropriate selection pressure to converge becomes difficult as the number of objectives increase. This difficulty is further compounded for large-scale MaOPs, i.e., MaOPs possessing large amounts of decision variables. In this thesis, we explore the challenges of many-objective optimization and propose three new promising algorithms designed to efficiently solve MaOPs. Experimental results demonstrate the proposed optimizers to perform very well, often outperforming state-of-the-art many-objective algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution networks paradigm is changing currently requiring improved methodologies and tools for network analysis and planning. A relevant issue is analyzing the impact of the Distributed Generation penetration in passive networks considering different operation scenarios. Studying DG optimal siting and sizing the planner can identify the network behavior in presence of DG. Many approaches for the optimal DG allocation problem successfully used multi-objective optimization techniques. So this paper contributes to the fundamental stage of multi-objective optimization of finding the Pareto optimal solutions set. It is proposed the application of a Multi-objective Tabu Search and it was verified a better performance comparing to the NSGA-II method. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a methodology to consider the effects of the integration of DG on planning. Since DG has potential to defer investments in networks, the impact of DG on grid capacity is evaluated. A multi-objective optimization tool based on the meta-heuristic MEPSO is used, supporting an alternative approach to exploiting the Pareto front features. Tests were performed in distinct conditions with two well-known distribution networks: IEEE-34 and IEEE-123. The results combined minimization and maximization in order to produce different Pareto fronts and determine the extent of the impact caused by DG. The analysis provides useful information, such as the identification of futures that should be considered in planning. A future means a set of realizations of all uncertainties. MEPSO also presented a satisfactory performance in obtaining the Pareto fronts. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current SoC design trends are characterized by the integration of larger amount of IPs targeting a wide range of application fields. Such multi-application systems are constrained by a set of requirements. In such scenario network-on-chips (NoC) are becoming more important as the on-chip communication structure. Designing an optimal NoC for satisfying the requirements of each individual application requires the specification of a large set of configuration parameters leading to a wide solution space. It has been shown that IP mapping is one of the most critical parameters in NoC design, strongly influencing the SoC performance. IP mapping has been solved for single application systems using single and multi-objective optimization algorithms. In this paper we propose the use of a multi-objective adaptive immune algorithm (M(2)AIA), an evolutionary approach to solve the multi-application NoC mapping problem. Latency and power consumption were adopted as the target multi-objective functions. To compare the efficiency of our approach, our results are compared with those of the genetic and branch and bound multi-objective mapping algorithms. We tested 11 well-known benchmarks, including random and real applications, and combines up to 8 applications at the same SoC. The experimental results showed that the M(2)AIA decreases in average the power consumption and the latency 27.3 and 42.1 % compared to the branch and bound approach and 29.3 and 36.1 % over the genetic approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuning compilations is the process of adjusting the values of a compiler options to improve some features of the final application. In this paper, a strategy based on the use of a genetic algorithm and a multi-objective scheme is proposed to deal with this task. Unlike previous works, we try to take advantage of the knowledge of this domain to provide a problem-specific genetic operation that improves both the speed of convergence and the quality of the results. The evaluation of the strategy is carried out by means of a case of study aimed to improve the performance of the well-known web server Apache. Experimental results show that a 7.5% of overall improvement can be achieved. Furthermore, the adaptive approach has shown an ability to markedly speed-up the convergence of the original strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous multi-core FPGAs contain different types of cores, which can improve efficiency when used with an effective online task scheduler. However, it is not easy to find the right cores for tasks when there are multiple objectives or dozens of cores. Inappropriate scheduling may cause hot spots which decrease the reliability of the chip. Given that, our research builds a simulating platform to evaluate all kinds of scheduling algorithms on a variety of architectures. On this platform, we provide an online scheduler which uses multi-objective evolutionary algorithm (EA). Comparing the EA and current algorithms such as Predictive Dynamic Thermal Management (PDTM) and Adaptive Temperature Threshold Dynamic Thermal Management (ATDTM), we find some drawbacks in previous work. First, current algorithms are overly dependent on manually set constant parameters. Second, those algorithms neglect optimization for heterogeneous architectures. Third, they use single-objective methods, or use linear weighting method to convert a multi-objective optimization into a single-objective optimization. Unlike other algorithms, the EA is adaptive and does not require resetting parameters when workloads switch from one to another. EAs also improve performance when used on heterogeneous architecture. A efficient Pareto front can be obtained with EAs for the purpose of multiple objectives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network Virtualization is a key technology for the Future Internet, allowing the deployment of multiple independent virtual networks that use resources of the same basic infrastructure. An important challenge in the dynamic provision of virtual networks resides in the optimal allocation of physical resources (nodes and links) to requirements of virtual networks. This problem is known as Virtual Network Embedding (VNE). For the resolution of this problem, previous research has focused on designing algorithms based on the optimization of a single objective. On the contrary, in this work we present a multi-objective algorithm, called VNE-MO-ILP, for solving dynamic VNE problem, which calculates an approximation of the Pareto Front considering simultaneously resource utilization and load balancing. Experimental results show evidences that the proposed algorithm is better or at least comparable to a state-of-the-art algorithm. Two performance metrics were simultaneously evaluated: (i) Virtual Network Request Acceptance Ratio and (ii) Revenue/Cost Relation. The size of test networks used in the experiments shows that the proposed algorithm scales well in execution times, for networks of 84 nodes