973 resultados para Mukherjee, Arun B.: Trace elements from soil to human


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Global Environment Facility co-financed Soil Organic Carbon (GEFSOC) Project developed a comprehensive modelling system for predicting soil organic carbon (SOC) stocks and changes over time. This research is an effort to predict SOC stocks and changes for the Indian, Indo-Gangetic Plains (IGP), an area with a predominantly rice (Oryza sativa) - wheat (Triticum aestivum) cropping system, using the GEFSOC Modelling System and to compare output with stocks generated using mapping approaches based on soil survey data. The GEFSOC Modelling System predicts an estimated SOC stock for the IGP, India of 1.27, 1.32 and 1.27 Pg for 1990, 2000 and 2030, respectively, in the top 20 cm of soil. The SOC stock using a mapping approach based on soil survey data was 0.66 and 0.88 Pg for 1980 and 2000, respectively. The SOC stock estimated using the GEFSOC Modelling System is higher than the stock estimated using the mapping approach. This is due to the fact that while the GEFSOC System accounts for variation in crop input data (crop management), the soil mapping approach only considers regional variation in soil texture and wetness. The trend of overall change in the modelled SOC stock estimates shows that the IGP, India may have reached an equilibrium following 30-40 years of the Green Revolution. This can be seen in the SOC stock change rates. Various different estimation methods show SOC stocks of 0.57-1.44 Pg C for the study area. The trend of overall change in C stock assessed from the soil survey data indicates that the soils of the IGP, India may store a projected 1.1 Pg of C in 2030. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling their distribution and transfer within the soil and vegetation systems are not always well defined. Total concentrations of up to 15,195 mg center dot kg (-1) As, 6,690 mg center dot kg(-1) Cu, 24,820 mg center dot kg(-1) Pb and 9,810 mg center dot kg(-1) Zn in soils, and 62 mg center dot kg(-1) As, 1,765 mg center dot kg(-1) Cu, 280 mg center dot kg(-1) Pb and 3,460 mg center dot kg (-1) Zn in vegetation were measured. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters (maximum 2-3 km). Parent material, prevailing wind direction, and soil physical and chemical characteristics were found to correlate poorly with the restricted trace element distributions in soils. Hypotheses are given for this unusual distribution: (1) the contaminated soils were removed by erosion or (2) mines and smelters released large heavy particles that could not have been transported long distances. Analyses of the accumulation of trace elements in vegetation (median ratios: As 0.06, Cu 0.19, Pb 0.54 and Zn 1.07) and the percentage of total trace elements being DTPA extractable in soils (median percentages: As 0.06%, Cu 15%, Pb 7% and Zn 4%) indicated higher relative trace element mobility in soils with low total concentrations than in soils with elevated concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter addresses the mismatch between existing knowledge, techniques and management methods for improved soil carbon management and deficits in its implementation. The paper gives a short overview of the evolution of the concept of soil carbon, which illustrates the interactions between scientific, industrial, technical, societal and economic change. It then goes on to show that sufficient techniques are available for the large-scale implementation of soil organic carbon (SOC) sequestration. A subsequent analysis of the bottlenecks that prevent implementation identifies where issues need to be addressed in order to enable robust, integrated and sustainable SOC management strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reproductive performance of cattle may be influenced by several factors, but mineral imbalances are crucial in terms of direct effects on reproduction. Several studies have shown that elements such as calcium, copper, iron, magnesium, selenium, and zinc are essential for reproduction and can prevent oxidative stress. However, toxic elements such as lead, nickel, and arsenic can have adverse effects on reproduction. In this paper, we applied a simple and fast method of multi-element analysis to bovine semen samples from Zebu and European classes used in reproduction programs and artificial insemination. Samples were analyzed by inductively coupled plasma spectrometry (ICP-MS) using aqueous medium calibration and the samples were diluted in a proportion of 1:50 in a solution containing 0.01% (vol/vol) Triton X-100 and 0.5% (vol/vol) nitric acid. Rhodium, iridium, and yttrium were used as the internal standards for ICP-MS analysis. To develop a reliable method of tracing the class of bovine semen, we used data mining techniques that make it possible to classify unknown samples after checking the differentiation of known-class samples. Based on the determination of 15 elements in 41 samples of bovine semen, 3 machine-learning tools for classification were applied to determine cattle class. Our results demonstrate the potential of support vector machine (SVM), multilayer perceptron (MLP), and random forest (RF) chemometric tools to identify cattle class. Moreover, the selection tools made it possible to reduce the number of chemical elements needed from 15 to just 8.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air Pollution and Health: Bridging the Gap from Sources to Health Outcomes, an international specialty conference sponsored by the American Association for Aerosol Research, was held to address key uncertainties in our understanding of adverse health effects related to air pollution and to integrate and disseminate results from recent scientific studies that cut across a range of air pollution-related disciplines. The Conference addressed the science of air pollution and health within a multipollutant framework (herein "multipollutant" refers to gases and particulate matter mass, components, and physical properties), focusing on five key science areas: sources, atmospheric sciences, exposure, dose, and health effects. Eight key policy-relevant science questions integrated across various parts of the five science areas and a ninth question regarding findings that provide policy-relevant insights served as the framework for the meeting. Results synthesized from this Conference provide new evidence, reaffirm past findings, and offer guidance for future research efforts that will continue to incrementally advance the science required for reducing uncertainties in linking sources, air pollutants, human exposure, and health effects. This paper summarizes the Conference findings organized around the science questions. A number of key points emerged from the Conference findings. First, there is a need for greater focus on multipollutant science and management approaches that include more direct studies of the mixture of pollutants from sources with an emphasis on health studies at ambient concentrations. Further, a number of research groups reaffirmed a need for better understanding of biological mechanisms and apparent associations of various health effects with components of particulate matter (PM), such as elemental carbon, certain organic species, ultrafine particles, and certain trace elements such as Ni, V, and Fe(II), as well as some gaseous pollutants. Although much debate continues in this area, generation of reactive oxygen species induced by these and other species present in air pollution and the resulting oxidative stress and inflammation were reiterated as key pathways leading to respiratory and cardiovascular outcomes. The Conference also underscored significant advances in understanding the susceptibility of populations, including the role of genetics and epigenetics and the influence of socioeconomic and other confounding factors and their synergistic interactions with air pollutants. Participants also pointed out that short-and long-term intervention episodes that reduce pollution from sources and improve air quality continue to indicate that when pollution decreases so do reported adverse health effects. In the limited number of cases where specific sources or PM2.5 species were included in investigations, specific species are often associated with the decrease in effects. Other recent advances for improved exposure estimates for epidemiological studies included using new technologies such as microsensors combined with cell phone and integrated into real-time communications, hybrid air quality modeling such as combined receptor-and emission-based models, and surface observations used with remote sensing such as satellite data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social learning approaches have become a prominent focus in studies related to sustainable agriculture. In order to better understand the potential of social learning for more sustainable development, the present study assessed the processes, effects and facilitating elements of interaction related to social learning in the context of Swiss soil protection and the innovative ‘From Farmer - To Farmer’ project. The study reveals that social learning contributes to fundamental transformations of patterns of interactions. However, the study also demonstrates that a learning-oriented understanding of sustainable development implies including analysis of the institutional environments in which the organizations of the individual representatives of face-to-face-based social learning processes are operating. This has shown to be a decisive element when face-to-face-based learning processes of the organisations’ representatives are translated into organisational learning. Moreover, the study revealed that this was achieved not directly through formalisation of new lines of institutionalised cooperation but by establishing links in a ‘boundary space’ trying out new forms of collaboration, aiming at social learning and co-production of knowledge. It is argued that further research on social learning processes should give greater emphasis to this intermediary level of ‘boundary spaces’.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ontogenetic variation in 4 trace element ((88)Sr, (137)Ba, (24)Mg, (23)Na) concentrations and their ratios to Ca were measured in statoliths of the jumbo flying squid Dosidicus gigas off the Exclusive Economic Zone of Chilean and Peruvian waters using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The element compositions of statoliths showed no significant differences between females and males. All of the elements in different growth zones showed significant variations, except for Mg. Sr:Ca and Mg:Ca were good indicators for distinguishing squid from autumn and winter spawning seasons. Sr:Ca and Ba:Ca distribution patterns in statoliths confirmed that paralarvae and juvenile squid inhabit surface waters, while subadult squid migrate into deeper waters. An increasing Sr: Ca ratio of subadult squid could be explained by declining temperature gradients from northern to southern sampling locations, although no significant Sr: Ca differences were observed (p > 0.05). Mg:Ca ratios decreased progressively from the nucleus to the peripheral zone, which might be correlated with statolith growth rates. Na:Ca ratios slightly declined from paralarvae to the subadult phase. Quantitative relationships between statolith trace elements and environmental conditions under different growth stages are needed to improve our understanding of life history of D. gigas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The upper part of the basaltic substratum of the Atlantic abyssal plain, approaching subduction beneath the Barbados Ridge and thus presumably beneath the Lesser Antilles island arc, is made of typical LREE-depleted oceanic tholeiites. Mineralogical (microprobe) and geochemical (X-ray fluorescence, neutron activation analyses) data are given for 12 samples from the bottom of Hole 543A, which is 3.5 km seaward of the deformation front of the Barbados Ridge complex. These basalts are overlain by a Quaternary to Maestrichtian-Campanian sedimentary sequence. Most of the basalts are relatively fresh (in spite of the alteration of olivine and development of some celadonite, clays, and chlorite in their groundmass), and their mineralogical and geochemical compositions are similar to those of LREE-depleted recent basalts from the Mid-Atlantic Ridge. The most altered samples occur at the top of the basaltic sequence, and show trends of enrichment in alkali metals typical of altered oceanic tholeiites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric trace element concentrations were measured from March 1999 through December 2003 at the Air Chemistry Observatory of the German Antarctic station Neumayer by inductively coupled plasma - quadrupol mass spectrometry (ICP-QMS) and ion chromatogra-phy (IC). This continuous five year long record derived from weekly aerosol sampling re-vealed a distinct seasonal summer maximum for elements linked with mineral dust entry (Al, La, Ce, Nd) and a winter maximum for the mostly sea salt derived elements Li, Na, K, Mg, Ca, and Sr. The relative seasonal amplitude was around 1.7 and 1.4 for mineral dust (La) and sea salt aerosol (Na), respectively. On average a significant deviation regarding mean ocean water composition was apparent for Li, Mg, and Sr which could hardly be explained by mir-abilite precipitation on freshly formed sea ice. In addition we observed all over the year a not clarified high variability of element ratios Li/Na, K/Na, Mg/Na, Ca/Na, and Sr/Na. We found an intriguing co-variation of Se concentrations with biogenic sulfur aerosols (methane sul-fonate and non-sea salt sulfate), indicating a dominant marine biogenic source for this element linked with the marine biogenic sulfur source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceanic sediments deposited at high rate close to continents are dominated by terrigenous material. Aside from dilution by biogenic components, their chemical compositions reflect those of nearby continental masses. This study focuses on oceanic sediments coming from the juvenile Canadian Cordillera and highlights systematic differences between detritus deriving from juvenile crust and detritus from old and mature crust. We report major and trace element concentrations for 68 sediments from the northernmost part of the Cascade forearc, drilled at ODP Sites 888 and 1027. The calculated weighted averages for each site can then be used in the future to quantify the contribution of subducted sediments to Cascades volcanism. The two sites have similar compositions but Site 888, located closer to the continent, has higher sandy turbidite contents and displays higher bulk SiO2/Al2O3 with lower bulk Nb/Zr, attributed to the presence of zircons in the coarse sands. Comparison with published data for other oceanic sedimentary piles demonstrates the existence of systematic differences between modern sediments deriving from juvenile terranes (juvenile sediments) and modern sediments derived from mature continental areas (cratonic sediments). The most striking systematic difference is for Th/Nb, Th/U, Nb/U and Th/Rb ratios: juvenile sediments have much lower ratios than cratonic sediments. The small enrichment of Th over Nb in cratonic sediments may be explained by intracrustal magmatic and metamorphic differentiation processes. In contrast, their elevated Th/U and Nb/U ratios (average values of 6.87 and 7.95, respectively) in comparison to juvenile sediments (Th/U ~ 3.09, Nb/U ~ 5.15) suggest extensive U and Rb losses on old cratons. Uranium and Rb losses are attributed to long-term leaching by rain and river water during exposure of the continental crust at the surface. Over geological times, the weathering effects create a slow but systematic increase of Th/U with exposure time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stockwork-like metal sulfide mineralizations were found at 910-928 m below seafloor (BSF) in the pillow/dike transition zone of Hole 504B. This is the same interval where most physical properties of the 5.9-m.y.-old crust of the Costa Rica Rift change from those characteristic of Layer 2B to those of Layer 2C. The pillow lavas, breccias, and veins of the stockwork-like zone were studied by transmitted and reflected light microscopy, X-ray diffraction, and electron microprobe analysis. Bulk rock oxygen isotopic analyses as well as isolated mineral oxygen and sulfur isotopic analyses and fluid inclusion measurements were carried out. A complex alteration history was reconstructed that includes three generations of fissures, each followed by precipitation of characteristic hydrothermal mineral parageneses: (1) Minor and local deposition of quartz occurred on fissure walls; adjacent wall rocks were silicified, followed by formation of chlorite and minor pyrite I in the veins, whereas albite, sphene, chlorite and chlorite-expandable clay mixtures, actinolite, and pyrite replaced igneous phases in the host rocks. The hydrothermal fluids responsible for this first stage were probably partially reacted seawater, and their temperatures were at least 200-250° C. (2) Fissures filled during the first stage were reopened and new cracks formed. They were filled with quartz, minor chlorite and chlorite-expandable clay mixtures, traces of epidote, common pyrite, sphalerite, chalcopyrite, and minor galena. During the second stage, hydrothermal fluids were relatively evolved metal- and Si-rich solutions whose temperatures ranged from 230 to 340° C. The fluctuating chemical composition and temperature of the solutions produced a complex depositional sequence of sulfides in the veins: chalcopyrite I, ± Fe-rich sphalerite, chalcopyrite II ("disease"), Fe-poor sphalerite, chalcopyrite III, galena, and pyrite II. (3) During the last stage, zeolites and Mg-poor calcite filled up the remaining spaces and newly formed cracks and replaced the host rock plagioclase. Analcite and stilbite were first to form in veins, possibly at temperatures below 200°C; analcite and earlier quartz were replaced by laumontite at 250°C, whereas calcite formation temperature ranged from 135 to 220°C. The last stage hydrothermal fluids were depleted in Mg and enriched in Ca and 18O compared to seawater and contained a mantle carbon component. This complex alteration history paralleling a complex mineral paragenesis can be interpreted as the result of a relatively long-term evolution of a hydrothermal system with superimposed shorter term fluctuations in solution temperature and composition. Hydrothermal activity probably began close to the axis of the Costa Rica Rift with the overall cooling of the system and multiple fracturing stages due to movement of the crust away from the axis and/or cooling of a magmatic heat source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary sulfides from cores of ODP Holes 158-957M, 158-957C, and 158-957H on the active TAG hydrothermal mound (Mid-Atlantic Ridge, 26°08'N) have been studied for concentrations of several chemical elements. Based on 262 microprobe analyses it has been found that the sulfides have extremely heterogeneous distribution of noble metals (Au, Ag, Pt, and Pd) and several associated elements (Hg, Co, and Se). Noble metals are arranged in the following order in terms of decreasing abundance, i.e. concentration level above detection limits (the number of analyses containing a specific element is given in parentheses): Au (65), Ag (46), Pt (21), and Pd (traces). The associated trace elements have the following series: Co (202), Hg (132), and Se (49). The main carriers of "invisible" portion of the noble metals are represented by pyrite (Au, Hg), marcasite and pyrite (Ag, Co), sphalerite and chalcopyrite (Pt, Pd), and chalcopyrite (Se). Noble metal distribution in sulfides reveals a lateral zonality: maximal concentrations and abundance of Au in chalcopyrite (or Pt and Ag in chalcopyrite and pyrite) increase from the periphery (Hole 957H) to the center (holes 957C and 957M) of the hydrothermal mound, while Au distribution in pyrite displays a reversed pattern. Co concentration increases with depth. Vertical zonality in distribution of the elements mentioned above and their response to evolution of ore genesis are under discussion in the paper.