948 resultados para Mucous-supported dentures
Resumo:
PURPOSE: The aim of this study was to analyze prosthetic maintenance in partially edentulous patients with removable prostheses supported by teeth and strategic implants. MATERIALS AND METHODS: Sixty patients with removable partial prostheses and combined tooth-implant support were identified within the time period from 1998 to 2006. One group consisted of 42 patients (planned group) with a reduced residual dentition and in need of removable partial dentures (RPDs) or overdentures in the maxilla and/or mandible. They were admitted consecutively for treatment. Due to missing teeth in strategic important positions, one or two implants were placed to improve symmetrical denture support and retention. The majority of residual teeth exhibited an impaired structural integrity and therefore were provided with root copings for denture retention. A few vital teeth were used for telescopic crowns. The anchorage system for the strategic implants was selected accordingly. A second group of 18 patients (repair group) wearing RPDs with the loss of one abutment tooth due to biologic or mechanical failure was identified. These abutment teeth were replaced by 21 implants, and patients continued to wear their original prostheses. The observation time for planned and repair groups was 12 months to 8 years. All patients followed a regular maintenance schedule. Technical or biologic complications with supporting teeth or implants and prosthetic service were registered regularly. RESULTS: Three maxillary implants were lost after loading and three roots with copings had to be removed. Biologic problems included caries and periodontal/peri-implant infection with a significantly higher incidence in the repair group (P < .05). Technical complications with the dentures were rather frequent in both groups, mostly related to the anchorage system (matrices) of root copings and implants. Maintenance and complications were observed more frequently in the first year after delivery of the denture than in the following 3 years (P < .05). No denture had to be remade. CONCLUSIONS: The placement of a few implants allows for maintaining a compromised residual dentition for support of RPDs. The combination of root and implant support facilitates treatment planning and enhances designing the removable denture. It also proves to be a practical rescue method. Technical problems with the anchorage system were frequent, particularly in the first year after delivery of the dentures.
Resumo:
PURPOSE To assess the survival outcomes and reported complications of screw- and cement-retained fixed reconstructions supported on dental implants. MATERIALS AND METHODS A Medline (PubMed), Embase, and Cochrane electronic database search from 2000 to September 2012 using MeSH and free-text terms was conducted. Selected inclusion and exclusion criteria guided the search. All studies were first reviewed by abstract and subsequently by full-text reading by two examiners independently. Data were extracted by two examiners and statistically analyzed using a random effects Poisson regression. RESULTS From 4,324 abstracts, 321 full-text articles were reviewed. Seventy-three articles were found to qualify for inclusion. Five-year survival rates of 96.03% (95% confidence interval [CI]: 93.85% to 97.43%) and 95.55% (95% CI: 92.96% to 97.19%) were calculated for cemented and screw-retained reconstructions, respectively (P = .69). Comparison of cement and screw retention showed no difference when grouped as single crowns (I-SC) (P = .10) or fixed partial dentures (I-FDP) (P = .49). The 5-year survival rate for screw-retained full-arch reconstructions was 96.71% (95% CI: 93.66% to 98.31). All-ceramic reconstruction material exhibited a significantly higher failure rate than porcelain-fused-to-metal (PFM) in cemented reconstructions (P = .01) but not when comparing screw-retained reconstructions (P = .66). Technical and biologic complications demonstrating a statistically significant difference included loss of retention (P ≤ .01), abutment loosening (P ≤ .01), porcelain fracture and/or chipping (P = .02), presence of fistula/suppuration (P ≤ .001), total technical events (P = .03), and total biologic events (P = .02). CONCLUSIONS Although no statistical difference was found between cement- and screw-retained reconstructions for survival or failure rates, screw-retained reconstructions exhibited fewer technical and biologic complications overall. There were no statistically significant differences between the failure rates of the different reconstruction types (I-SCs, I-FDPs, full-arch I-FDPs) or abutment materials (titanium, gold, ceramic). The failure rate of cemented reconstructions was not influenced by the choice of a specific cement, though cement type did influence loss of retention.
Resumo:
A perda de dentes além de afectar a mastigação e a estética, altera também o equilíbrio do sistema estomatognático, observando-se de imediato alterações na posição dos dentes adjacentes e dos dentes oponentes. Torna-se, portanto, imprescindível para a reposição da saúde oral do paciente a reabilitação com recurso a próteses fixas ou removíveis. No que diz respeito às próteses parciais removíveis (PPR´s) estas visam a substituição dos dentes perdidos, sendo facilmente removidas e inseridas pelo paciente, sem qualquer intervenção do médico dentista e, apoiam-se directamente na mucosa e nos dentes. Enquanto as PPR´s acrílicas são suportadas pela mucosa, mediante uma ampla área de contacto, as próteses esqueléticas são suportadas pelos dentes pilares através da colocação de retentores. No caso específico das PPR´s, é fundamental que o profissional de saúde tenha em consideração a importância do planeamento correcto e adequado da reabilitação oral. Para isso, pode e deve utilizar o paralelómetro, determinando assim correctamente a localização dos planos-guia, dos apoios e retentores necessários. Guiando-se por estes princípios fundamentais, qualquer reabilitação com recurso às PPR´s pode ser bem sucedida quer a nível estético quer a nível funcional.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
Conventional tilted implants are used in oral rehabilitation for heavily absorbed maxilla to avoid bone grafts; however, few research studies evaluate the biomechanical behavior when different angulations of the implants are used. The aim of this study was evaluate, trough photoelastic method, two different angulations and length of the cantilever in fixed implant-supported maxillary complete dentures. Two groups were evaluated: G15 (distal tilted implants 15°) and G35 (distal tilted implants 35°) n = 6. For each model, 2 distal tilted implants (3.5 x 15 mm long cylindrical cone) and 2 parallel tilted implants in the anterior region (3.5 x 10 mm) were installed. Photoelastic models were submitted to three vertical load tests: in the end of cantilever, in the last pillar and in the all pillars at the same time. We obtained the shear stress by Fringes software and found values for total, cervical and apical stress. The quantitative analysis was performed using the Student tests and Mann-Whitney test; p ≥ 0.05. There is no difference between G15 and G35 for total stress regardless of load type. Analyzing the apical region, G35 reduced strain values considering the distal loads (in the cantilever p = 0.03 and in the last pillar p = 0.02), without increasing the stress level in the cervical region. Considering the load in all pillars, G35 showed higher stress concentration in the cervical region (p = 0.04). For distal loads, G15 showed increase of tension in the apical region, while for load in all pillars, G35 inclination increases stress values in the cervical region.
Resumo:
In long-term oral rehabilitation treatments, resistance of provisional crowns is a very important factor, especially in cases of an extensive edentulous distal space. The aim of this laboratorial study was to evaluate an acrylic resin cantilever-type prosthesis regarding the flexural strength of its in-balance portion as a function of its extension variation and reinforcement by two types of fibers (glass and polyaramid), considering that literature is not conclusive on this subject. Each specimen was composed by 3 total crowns at its mesial portion, each one attached to an implant component (abutment), while the distal portion (cantilever) had two crowns. Each specimen was constructed by injecting acrylic resin into a two-part silicone matrix placed on a metallic base. In each specimen, the crowns were fabricated with either acrylic resin (control group) or acrylic resin reinforced by glass (Fibrante, Angelus) or polyaramide (Kevlar 49, Du Pont) fibers. Compression load was applied on the cantilever, in a point located 7, 14 or 21 mm from the distal surface of the nearest crown with abutment, to simulate different extensions. The specimen was fixed on the metallic base and the force was applied until fracture in a universal test machine. Each one of the 9 sub-groups was composed by 10 specimens. Flexural strength means (in kgf) for the distances of 7, 14 and 21 mm were, respectively, 28.07, 8.27 and 6.39 for control group, 31.89, 9.18 and 5.16 for Kevlar 49 and 30.90, 9.31 and 6.86 for Fibrante. Data analysis ANOVA showed statistically significant difference (p<0.05) only regarding cantilever extension. Tukey's test detected significantly higher flexural strength for the 7 mm-distance, followed by 14 and 21 mm. Fracture was complete only on specimens of non-reinforced groups.
Resumo:
TEMA: a produção da fala nas modalidades de reabilitação oral protética. OBJETIVO: verificar se o tipo de reabilitação oral interfere na produção da fala. MÉTODO: 36 idosos (média = 68 anos), divididos em 3 grupos, foram avaliados: 13 com dentes naturais (A), 13 com prótese total mucosossuportada superior e inferior (B) e 10 com prótese total mucosossuportada superior e implantossuportada inferior (C). A estabilidade das próteses foi avaliada por um dentista e amostras de fala foram analisadas por 5 fonoaudiólogos. Para determinar a freqüência de alteração dos sons da fala utilizou-se o cálculo da Porcentagem de Consoantes Corretas (PCC). RESULTADOS: observou-se poucos casos com alteração de fala, com maior freqüência no grupo C (23,08%), sendo a articulação travada presente em todos os grupos, a redução dos movimentos labiais em dois grupos (A e B) e a articulação exagerada e a falta de controle salivar em um dos grupos (C e B). Quanto à PCC, menor valor foi observado para os fones linguodentais nos grupos B e C (maior ocorrência de alteração), seguido dos fones alveolares, predominando casos sem alteração no grupo A, contrariamente aos demais grupos, sendo a projeção lingual e o ceceio as alterações mais encontradas. Não houve diferença entre os grupos e a maioria do grupo B estava com a prótese inferior insatisfatória, não havendo associação entre alteração de fala e prótese insatisfatória. CONCLUSÃO: apesar da amostra pequena, indivíduos reabilitados com prótese total apresentam alteração nos fones linguodentais e alveolares e o tipo de prótese, bem como a estabilidade desta parece não interferir na produção da fala.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, frequently hinder the development of clinical trials. The purpose of this in vitro study was to determine the modulus of elasticity of a polyurethane isotropic experimental model via tension tests, comparing the results to those reported in the literature for mandibular bone, in order to validate the use of such a model in lieu of mandibular bone in biomechanical studies. MATERIAL AND METHODS: Forty-five polyurethane test specimens were divided into 3 groups of 15 specimens each, according to the ratio (A/B) of polyurethane reagents (PU-1: 1/0.5, PU-2: 1/1, PU-3: 1/1.5). RESULTS: Tension tests were performed in each experimental group and the modulus of elasticity values found were 192.98 MPa (SD=57.20) for PU-1, 347.90 MPa (SD=109.54) for PU-2 and 304.64 MPa (SD=25.48) for PU-3. CONCLUSION: The concentration of choice for building the experimental model was 1/1.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, most always hinder the performance of clinical trials. Thus, in vitro studies become an important source of information for the understanding of biomechanical events on implant-supported prostheses, although study results cannot be considered reliable unless validation studies are conducted. The purpose of this work was to validate an artificial experimental model based on its modulus of elasticity, to simulate the performance of human bone in vivo in biomechanical studies of implant-supported prostheses. MATERIAL AND METHODS: In this study, fast-curing polyurethane (F16 polyurethane, Axson) was used to build 40 specimens that were divided into five groups. The following reagent ratios (part A/part B) were used: Group A (0.5/1.0), Group B (0.8/1.0), Group C (1.0/1.0), Group D (1.2/1.0), and Group E (1.5/1.0). A universal testing machine (Kratos model K - 2000 MP) was used to measure modulus of elasticity values by compression. RESULTS: Mean modulus of elasticity values were: Group A - 389.72 MPa, Group B - 529.19 MPa, Group C - 571.11 MPa, Group D - 470.35 MPa, Group E - 437.36 MPa. CONCLUSION: The best mechanical characteristics and modulus of elasticity value comparable to that of human trabecular bone were obtained when A/B ratio was 1:1.
Resumo:
The aims of this study were to evaluate the incidence of mutans streptococci (MS - sessile form) on complete maxillary dentures after use of a specific denture paste, and to determine the minimum inhibitory concentration (MIC) and maximum inhibitory dilution (MID) of 3 oral mouthrinses: Cepacol, Plax and Periogard. Seventy-seven complete denture wearers were randomly assigned into 2 groups, according to the product used for denture cleaning: Control group - conventional dentifrice (Kolynos-Super White); and Test group: experimental denture cleaning paste. Denture biofilm was collected at baseline and after 90 and 180 days after treatment by brushing the dentures with saline solution. After decimal serial dilution, samples were seeded onto agar sucrose bacitracin to count colonies with morphological characteristics of MS. MS identification was performed by the sugar fermentation tests. After this procedure, brain heart infusion broth (BHI) was added to oral mouthrinses (Plax, Cepacol e Periogard) and seeded on Petri dishes. The colonies were seeded using the Steers multiplier and, after the incubation, the MIC and MID of the mouthrinses were calculated. The results showed an incidence of 74.0% (n=57) of MS in the 77 complete dentures examined in the study, being 76.3% (n=29) of the Control group (conventional dentifrice) and 71.8% (28) of the Test group (experimental denture cleaning paste). In both groups, the number of positive cases for MS decreased from day 0 to day 180. In the Test group there was a slight decrease in the incidence of Streptococcus mutans 90 days after use of the experimental denture cleaning paste, which was not observed in the Control group. As regards to mouthrinses, for both groups, Periogard showed antimicrobial action with the highest dilution, followed by Cepacol and Plax. In conclusion, the incidence of MS in complete dentures was high and Periogard was the mouthrinse with the strongest antimicrobial action against MS. The experimental denture cleaning paste showed a slight action against S. mutans after 90 days of treatment.
Resumo:
The objective of this study was to evaluate the retention force of T-bar clasps made from commercially pure titanium (CP Ti) and cobalt-chromium (Co-Cr) alloy by the insertion/removal test simulating 5 years use. Thirty-six frameworks were cast from CP Ti (n=18) and Co-Cr alloy (n=18) with identical prefabricated patterns on refractory casts from a distal extension mandibular hemi-arch segment. The castings were made on a vacuum-pressure machine, under vacuum and argon atmosphere. Each group was subdivided in three, corresponding to 0.25 mm, 0.50 mm and 0.75 mm undercuts, respectively. No polishing procedures were performed to ensure uniformity. The specimens were subjected to an insertion/removal test and data was analyzed statistically to compare CP Ti and Co-Cr alloy in the same undercut (Student's t-test for independent samples) and each material in different undercuts (one-way ANOVA) (p=0.05). Comparisons between materials revealed significant differences (p=0.017) only for the 0.50-mm undercut. No significant differences (p>0.05) were found when comparing the same material for the undercuts. It may be concluded that for different undercuts, both Co-Cr alloy and CP Ti had no significant differences for T-bar clasps; CP Ti showed the lowest retention force values when compared to Co-Cr alloy in each undercut, but with significant difference only for the 0.50-mm undercut; and both materials maintained the retentive capacity during the simulation test.
Resumo:
A practical method for the structural assignment of 3,4-O-benzylidene-D-ribono-1,5-lactones and analogues using conventional NMR techniques and NOESY measurements in solution is described. 2-O-Acyl-3,4-O-benzylidene-D-ribono-1,5-lactones were prepared in good yields by acylation of Zinner’s lactone with acyl chlorides under mildly basic conditions. Structural determination of 2-O-(4-nitrobenzoyl)-3,4-O-benzylidene-D-ribono-1,5-lactone was achieved by single crystal x-ray diffraction, which supports the results based on spectroscopic data.
Resumo:
Methyl esters were prepared by the clean, one-step catalytic esterification of primary alcohols using molecular oxygen as a green oxidant and a newly developed SiO(2)-supported gold nanoparticle catalyst. The catalyst was highly active and selective in a broad range of pressure and temperature. At 3 atm O(2) and 130 degrees C benzyl alcohol was converted to methyl benzoate with 100% conversion and 100% selectivity in 4 h of reaction. This catalytic process is much ""greener"" than the conventional reaction routes because it avoids the use of stoichiometric environmentally unfriendly oxidants, usually required for alcohol oxidation, and the use of strong acids or excess of reactants or constant removal of products required to shift the equilibrium to the desired esterification product.
Resumo:
Physical and electrochemical properties of nanostructured Ni-doped manganese oxides (MnO(x)) catalysts supported on different carbon powder substrates were investigated so as to characterize any carbon substrate effect toward the oxygen reduction reaction (ORR) kinetics in alkaline medium. These NiMnO(x)/C materials were characterized using physicochemical analyses. Small insertion of Ni atoms in the MnO(x) lattice was observed, which consists of a true doping of the manganese oxide phase. The corresponding NiMnO(x) phase is present in the form of needles or agglomerates, with crystallite sizes in the order of 1.5-6.7 nm (from x-ray diffraction analyses). Layered manganite (MnOOH) phase has been detected for the Monarch 1000-supported NiMnO(x) material, while different species of MnO(x) phases are present at the E350G and MM225 carbons. Electrochemical studies in thin porous coating active layers in the rotating ring-disk electrode setup revealed that the MnO(x) catalysts present better ORR kinetics and electrochemical stability upon Ni doping. The ORR follows the so-called peroxide mechanism on MnO(x)/C catalysts, with the occurrence of minority HO(2)(-) disproportionation reaction. The HO(2)(-) disproportionation reaction progressively increases with the Ni content in NiMnO(x) materials. The catalysts supported on the MM225 and E350G carbons promote faster disproportionation reaction, thus leading to an overall four-electron ORR pathway. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3528439] All rights reserved.
Resumo:
This article presents a methodology for calculating the gains of an output feedback controller for active vibration control of flexible rotors. The methodology is based on modal reduction. The proportional and derivative gains are obtained by adjusting the first two damping factors of the system and keeping the lengths of the two eigenvalues constant in the real-imaginary plane. The methodology is applied to an industrial gas compressor supported by active tilting-pad journal bearings. The unbalance response functions and mode shapes of the flexible rotor with and without active control are presented, showing significative improvement in damping reserve with the control. The importance of sensor location is emphasized, on the basis of the energy necessary to operate the active system over the entire frequency range studied. The best results are obtained by a decentralized controller, observing displacement and velocity of the shaft at the bearing positions.