938 resultados para Motor Unit Number Estimates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to analyze central motor output changes in relation to contraction force during motor fatigue. The triple stimulation technique (TST, Magistris et al. in Brain 121(Pt 3):437-450, 1998) was used to quantify a central conduction index (CCI = amplitude ratio of central conduction response and peripheral nerve response, obtained simultaneously by the TST). The CCI removes effects of peripheral fatigue from the quantification. It allows a quantification of the percentage of the entire target muscle motor unit pool driven to discharge by a transcranial magnetic stimulus. Subjects (n = 23) performed repetitive maximal voluntary contractions (MVC) of abductor digiti minimi (duration 1 s, frequency 0.5 Hz) during 2 min. TST recordings were obtained every 15 s, using stimulation intensities sufficient to stimulate all cortical motor neurons (MNs) leading to the target muscle, and during voluntary contractions of 20% of the MVC to facilitate the responses. TST was also repetitively recorded during recovery. This basic exercise protocol was modified in a number of experiments to further characterize influences on CCI of motor fatigue (4 min exercise at 50% MVC; delayed fatigue recovery during local hemostasis, "stimulated exercise" by 20 Hz trains of 1 s duration at 0.5 Hz during 2 min). In addition, the cortical silent period was measured during the basic exercise protocol. Force fatigued to approximately 40% of MVC in all experiments and in all subjects. In all subjects, CCI decreased during exercise, but this decrease varied markedly between subjects. On average, CCI reductions preceded force reductions during exercise, and CCI recovery preceded force recovery. Exercising at 50% for 4 min reduced muscle force more markedly than CCI. Hemostasis induced by a cuff delayed muscle force recovery, but not CCI recovery. Stimulated exercise reduced force markedly, but CCI decreased only marginally. Summarized, force reduction and reduction of the CCI related poorly quantitatively and in time, and voluntary drive was particularly critical to reduce the CCI. The fatigue induced reduction of CCI may result from a central inhibitory phenomenon. Voluntary muscle activation is critical for the CCI reduction, suggesting a primarily supraspinal mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motor neuron disease (MND) is characterised by progressive deterioration of the corticospinal tract, brainstem, and anterior horn cells of the spinal cord. There is no pathognomonic test for the diagnosis of MND, and physicians rely on clinical criteria-upper and lower motor neuron signs-for diagnosis. The presentations, clinical phenotypes, and outcomes of MND are diverse and have not been combined into a marker of disease progression. No single algorithm combines the findings of functional assessments and rating scales, such as those that assess quality of life, with biological markers of disease activity and findings from imaging and neurophysiological assessments. Here, we critically appraise developments in each of these areas and discuss the potential of such measures to be included in the future assessment of disease progression in patients with MND.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this research was to examine the relationship between surface electromyographic (SEMG) spike activity and force. The secondary objective was to determine to what extent subcutaneous tissue impacts the high frequency component of the signal, as well as, examining the relationship between measures of SEMG spike shape and their traditional time and frequency analogues. A total of96 participants (46 males and 50 females) ranging in age (18-35 years), generated three 5-second isometric step contractions at each force level of 40, 60, 80, and 100 percent of maximal voluntary contraction (MVC). The presentation of the contractions was balanced across subjects. The right arm of the subject was positioned in the sagittal plane, with the shoulder and elbow flexed to 90 degrees. The elbow rested on a support in a neutral position (mid pronation/mid supination) and placed within a wrist cuff, fastened below the styloid process. The wrist cuff was attached to a load cell (JR3 Inc., Woodland, CA) recording the force produced. Biceps brachii activity was monitored with a pair of Ag/AgCI recording electrodes (Grass F-E9, Astro-Med Inc., West Warwick, RI) placed in a bipolar configuration, with an interelectrode distance (lED) of 2cm distal to the motor point. Data analysis was performed on a I second window of data in the middle of the 5-second contraction. The results indicated that all spike shape measures exhibited significant (p < 0.01) differences as force increase~ from 40 to 100% MVC. The spike shape measures suggest that increased motor unit (MU) recruitment was responsible for increasing force up to 80% MVC. The results suggested that further increases in force relied on MU III synchronization. The results also revealed that the subcutaneous tissue (skin fold thickness) had no relationship (r = 0.02; P > 0.05) with the mean number of peaks per spike (MNPPS), which was the high frequency component of the signal. Mean spike amplitude (MSA) and mean spike frequency (MSF) were highly correlated with their traditional measures root mean square (RMS) and mean power frequency (MPF), respectively (r = 0.99; r = 0.97; P < 0.01).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection of physiological signals from the motor system (electromyographic signals) is being utilized in the practice clinic to guide the therapist in a more precise and accurate diagnosis of motor disorders. In this context, the process of decomposition of EMG (electromyographic) signals that includes the identification and classification of MUAP (Motor Unit Action Potential) of a EMG signal, is very important to help the therapist in the evaluation of motor disorders. The EMG decomposition is a complex task due to EMG features depend on the electrode type (needle or surface), its placement related to the muscle, the contraction level and the health of the Neuromuscular System. To date, the majority of researches on EMG decomposition utilize EMG signals acquired by needle electrodes, due to their advantages in processing this type of signal. However, relatively few researches have been conducted using surface EMG signals. Thus, this article aims to contribute to the clinical practice by presenting a technique that permit the decomposition of surface EMG signal via the use of Hidden Markov Models. This process is supported by the use of differential evolution and spectral clustering techniques. The developed system presented coherent results in: (1) identification of the number of Motor Units actives in the EMG signal; (2) presentation of the morphological patterns of MUAPs in the EMG signal; (3) identification of the firing sequence of the Motor Units. The model proposed in this work is an advance in the research area of decomposition of surface EMG signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Estimate cataract surgical rates (CSR) for Brazil and each federal unit in 2006 and 2007 based on the number of surgeries performed by the Unified Health System to help plan a comprehensive ophthalmology network in order to eliminate cataract blindness in compliance with the target set by the World Health Organization (WHO) of 3 000 cataract surgeries per million inhabitants per year. Methods. This descriptive study calculates CSR by using the number of cataract surgeries carried out by the Brazilian Unified Health System for each federal unit and estimates the need for cataract surgery in Brazil for 2006-2007, with official population data provided by the Brazilian Institute of Geography and Statistics. The number of cataract surgeries was compared with the WHO target. Results. To reach the WHO goal for eliminating age-related cataract blindness in Brazil, 560 312 cataract surgeries in 2006 and 568 006 surgeries in 2007 needed to be done. In 2006, 179 121 cataract surgeries were done by the Unified Health System, corresponding to a CSR of 959 per million population; in 2007, 223 317 were performed, with a CSR of 1 179. With the Brazilian Council of Ophthalmology estimation of 165 000 surgeries each year by the non-public services, the CSR for Brazil would be 1 842 for 2006 and 2 051 for 2007. The proportions needed to achieve the proposed target were 38.6% in 2006 and 31.6% in 2007. Conclusions. Human resources, technical expertise, and equipment are crucial to reach the WHO goal. Brazil has enough ophthalmologists but needs improved planning and infrastructure in order to eliminate the problem, aspects that require greater financial investment and stronger political commitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one Holstein, and one Hereford) and one indicine (Nelore) cattle. Within mapped chromosomal sequence, we identified 1265 CNV regions comprising similar to 55.6-Mbp sequence-476 of which (similar to 38%) have not previously been reported. We validated this sequence-based CNV call set with array comparative genomic hybridization (aCGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH), achieving a validation rate of 82% and a false positive rate of 8%. We further estimated absolute copy numbers for genomic segments and annotated genes in each individual. Surveys of the top 25 most variable genes revealed that the Nelore individual had the lowest copy numbers in 13 cases (similar to 52%, chi(2) test; P-value <0.05). In contrast, genes related to pathogen- and parasite-resistance, such as CATHL4 and ULBP17, were highly duplicated in the Nelore individual relative to the taurine cattle, while genes involved in lipid transport and metabolism, including APOL3 and FABP2, were highly duplicated in the beef breeds. These CNV regions also harbor genes like BPIFA2A (BSP30A) and WC1, suggesting that some CNVs may be associated with breed-specific differences in adaptation, health, and production traits. By providing the first individualized cattle CNV and segmental duplication maps and genome-wide gene copy number estimates, we enable future CNV studies into highly duplicated regions in the cattle genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amplifications and deletions of chromosomal DNA, as well as copy-neutral loss of heterozygosity have been associated with diseases processes. High-throughput single nucleotide polymorphism (SNP) arrays are useful for making genome-wide estimates of copy number and genotype calls. Because neighboring SNPs in high throughput SNP arrays are likely to have dependent copy number and genotype due to the underlying haplotype structure and linkage disequilibrium, hidden Markov models (HMM) may be useful for improving genotype calls and copy number estimates that do not incorporate information from nearby SNPs. We improve previous approaches that utilize a HMM framework for inference in high throughput SNP arrays by integrating copy number, genotype calls, and the corresponding confidence scores when available. Using simulated data, we demonstrate how confidence scores control smoothing in a probabilistic framework. Software for fitting HMMs to SNP array data is available in the R package ICE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genotyping platforms such as Affymetrix can be used to assess genotype-phenotype as well as copy number-phenotype associations at millions of markers. While genotyping algorithms are largely concordant when assessed on HapMap samples, tools to assess copy number changes are more variable and often discordant. One explanation for the discordance is that copy number estimates are susceptible to systematic differences between groups of samples that were processed at different times or by different labs. Analysis algorithms that do not adjust for batch effects are prone to spurious measures of association. The R package crlmm implements a multilevel model that adjusts for batch effects and provides allele-specific estimates of copy number. This paper illustrates a workflow for the estimation of allele-specific copy number, develops markerand study-level summaries of batch effects, and demonstrates how the marker-level estimates can be integrated with complimentary Bioconductor software for inferring regions of copy number gain or loss. All analyses are performed in the statistical environment R. A compendium for reproducing the analysis is available from the author’s website (http://www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.html).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT Resection of glioblastoma adjacent to motor cortex or subcortical motor pathways carries a high risk of both incomplete resection and postoperative motor deficits. Although the strategy of maximum safe resection is widely accepted, the rates of complete resection of enhancing tumor (CRET) and the exact causes for motor deficits (mechanical vs vascular) are not always known. The authors report the results of their concept of combining monopolar mapping and 5-aminolevulinic acid (5-ALA)-guided surgery in patients with glioblastoma adjacent to eloquent tissue. METHODS The authors prospectively studied 72 consecutive patients who underwent 5-ALA-guided surgery for a glioblastoma adjacent to the corticospinal tract (CST; < 10 mm) with continuous dynamic monopolar motor mapping (short-train interstimulus interval 4.0 msec, pulse duration 500 μsec) coupled to an acoustic motor evoked potential (MEP) alarm. The extent of resection was determined based on early (< 48 hours) postoperative MRI findings. Motor function was assessed 1 day after surgery, at discharge, and at 3 months. RESULTS Five patients were excluded because of nonadherence to protocol; thus, 67 patients were evaluated. The lowest motor threshold reached during individual surgery was as follows (motor threshold, number of patients): > 20 mA, n = 8; 11-20 mA, n = 13; 6-10 mA, n = 10; 4-5 mA, n = 13; and 1-3 mA, n = 23. Motor deterioration at postsurgical Day 1 and at discharge occurred in 30% (n = 20) and 10% (n = 7) of patients, respectively. At 3 months, 3 patients (4%) had a persisting postoperative motor deficit, 2 caused by vascular injury and 1 by mechanical injury. The rates of intra- and postoperative seizures were 1% and 0%, respectively. Complete resection of enhancing tumor was achieved in 73% of patients (49/67) despite proximity to the CST. CONCLUSIONS A rather high rate of CRET can be achieved in glioblastomas in motor eloquent areas via a combination of 5-ALA for tumor identification and intraoperative mapping for distinguishing between presumed and actual motor eloquent tissues. Continuous dynamic mapping was found to be a very ergonomic technique that localizes the motor tissue early and reliably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Qualquer tarefa motora ativa se dá pela ativação de uma população de unidades motoras. Porém, devido a diversas dificuldades, tanto técnicas quanto éticas, não é possível medir a entrada sináptica dos motoneurônios em humanos. Por essas razões, o uso de modelos computacionais realistas de um núcleo de motoneurônios e as suas respectivas fibras musculares tem um importante papel no estudo do controle humano dos músculos. Entretanto, tais modelos são complexos e uma análise matemática é difícil. Neste texto é apresentada uma abordagem baseada em identificação de sistemas de um modelo realista de um núcleo de unidades motoras, com o objetivo de obter um modelo mais simples capaz de representar a transdução das entradas do núcleo de unidades motoras na força do músculo associado ao núcleo. A identificação de sistemas foi baseada em um algoritmo de mínimos quadrados ortogonal para achar um modelo NARMAX, sendo que a entrada considerada foi a condutância sináptica excitatória dendrítica total dos motoneurônios e a saída foi a força dos músculos produzida pelo núcleo de unidades motoras. O modelo identificado reproduziu o comportamento médio da saída do modelo computacional realista, mesmo para pares de sinal de entrada-saída não usados durante o processo de identificação do modelo, como sinais de força muscular modulados senoidalmente. Funções de resposta em frequência generalizada do núcleo de motoneurônios foram obtidas do modelo NARMAX, e levaram a que se inferisse que oscilações corticais na banda-beta (20 Hz) podem influenciar no controle da geração de força pela medula espinhal, comportamento do núcleo de motoneurônios até então desconhecido.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the "slow" phase of pulmonary oxygen uptake (Vo2) appears to represent energetic processes in contracting muscle, electromyographic evidence tends not to support this. The present study assessed normalized integrated electromyographic (NIEMG) activity in eight muscles that act about the hip, knee and ankle during 8 min of moderate (ventilatory threshold) cycling in six male cyclists. (Vo2) was measured breath by breath during four repeated trials at each of the two intensities. Moderate and very heavy exercise followed a 4-min period of light exercise (50 W). During moderate exercise the slow (Vo2) phase was absent and NIEMG in all muscles did not increase after the first minute of exercise. During very heavy exercise, the slow phase emerged (time delay=58 ± 16 s) and increased progressively (time constant=120 ± 35 s) to an amplitude (0.83 ± 0.16 L/min) that was approximately 21% of the total (Vo2) response. This slow (Vo2) phase coincided with a significant increase in NIEMG in most muscles, and differences in NIEMG activities between the two intensities revealed "slow" muscle activation profiles that differed between muscles in terms of the onset, amplitude and shape of these profiles. This supports the hypothesis that the slow (Vo2) phase is a function of these different slow muscle activation profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The collective purpose of these two studies was to determine a link between the V02 slow component and the muscle activation patterns that occur during cycling. Six, male subjects performed an incremental cycle ergometer exercise test to determine asub-TvENT (i.e. 80% of TvENT) and supra-TvENT (TvENT + 0.75*(V02 max - TvENT) work load. These two constant work loads were subsequently performed on either three or four occasions for 8 mins each, with V02 captured on a breath-by-breath basis for every test, and EMO of eight major leg muscles collected on one occasion. EMG was collected for the first 10 s of every 30 s period, except for the very first 10 s period. The V02 data was interpolated, time aligned, averaged and smoothed for both intensities. Three models were then fitted to the V02 data to determine the kinetics responses. One of these models was mono-exponential, while the other two were biexponential. A second time delay parameter was the only difference between the two bi-exponential models. An F-test was used to determine significance between the biexponential models using the residual sum of squares term for each model. EMO was integrated to obtain one value for each 10 s period, per muscle. The EMG data was analysed by a two-way repeated measures ANOV A. A correlation was also used to determine significance between V02 and IEMG. The V02 data during the sub-TvENT intensity was best described by a mono-exponential response. In contrast, during supra-TvENT exercise the two bi-exponential models best described the V02 data. The resultant F-test revealed no significant difference between the two models and therefore demonstrated that the slow component was not delayed relative to the onset of the primary component. Furthermore, only two parameters were deemed to be significantly different based upon the two models. This is in contrast to other findings. The EMG data, for most muscles, appeared to follow the same pattern as V02 during both intensities of exercise. On most occasions, the correlation coefficient demonstrated significance. Although some muscles demonstrated the same relative increase in IEMO based upon increases in intensity and duration, it cannot be assumed that these muscles increase their contribution to V02 in a similar fashion. Larger muscles with a higher percentage of type II muscle fibres would have a larger increase in V02 over the same increase in intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise.