954 resultados para Motion path planning
Resumo:
Safe operation of unmanned aerial vehicles (UAVs) over populated areas requires reducing the risk posed by a UAV if it crashed during its operation. We considered several types of UAV risk-based path planning problems and developed techniques for estimating the risk to third parties on the ground. The path planning problem requires making trade-offs between risk and flight time. Four optimization approaches for solving the problem were tested; a network-based approach that used a greedy algorithm to improve the original solution generated the best solutions with the least computational effort. Additionally, an approach for solving a combined design and path planning problems was developed and tested. This approach was extended to solve robust risk-based path planning problem in which uncertainty about wind conditions would affect the risk posed by a UAV.
Resumo:
As unmanned autonomous vehicles (UAVs) are being widely utilized in military and civil applications, concerns are growing about mission safety and how to integrate dierent phases of mission design. One important barrier to a coste ective and timely safety certication process for UAVs is the lack of a systematic approach for bridging the gap between understanding high-level commander/pilot intent and implementation of intent through low-level UAV behaviors. In this thesis we demonstrate an entire systems design process for a representative UAV mission, beginning from an operational concept and requirements and ending with a simulation framework for segments of the mission design, such as path planning and decision making in collision avoidance. In this thesis, we divided this complex system into sub-systems; path planning, collision detection and collision avoidance. We then developed software modules for each sub-system
Resumo:
International audience
Resumo:
This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.
Resumo:
Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This model is used to construct a control policy for navigation to a goal region in a terrain map built using an on-board RGB-D camera. The terrain includes flat ground, small rocks, and non-traversable rocks. We report the results of 200 simulated and 35 experimental trials that validate the approach and demonstrate the value of considering control uncertainty in maintaining platform safety.
Resumo:
This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A*-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A* approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty.
Resumo:
Motion planning, or trajectory planning, commonly refers to a process of converting high-level task specifications into low-level control commands that can be executed on the system of interest. For different applications, the system will be different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a humanoid robot, or an industrial robotic arm. As human machine interaction is essential in many of these systems, safety is fundamental and crucial. Many of the applications also involve performing a task in an optimal manner within a given time constraint. Therefore, in this thesis, we focus on two aspects of the motion planning problem. One is the verification and synthesis of the safe controls for autonomous ground and air vehicles in collision avoidance scenarios. The other part focuses on the high-level planning for the autonomous vehicles with the timed temporal constraints. In the first aspect of our work, we first propose a verification method to prove the safety and robustness of a path planner and the path following controls based on reachable sets. We demonstrate the method on quadrotor and automobile applications. Secondly, we propose a reachable set based collision avoidance algorithm for UAVs. Instead of the traditional approaches of collision avoidance between trajectories, we propose a collision avoidance scheme based on reachable sets and tubes. We then formulate the problem as a convex optimization problem seeking control set design for the aircraft to avoid collision. We apply our approach to collision avoidance scenarios of quadrotors and fixed-wing aircraft. In the second aspect of our work, we address the high level planning problems with timed temporal logic constraints. Firstly, we present an optimization based method for path planning of a mobile robot subject to timed temporal constraints, in a dynamic environment. Temporal logic (TL) can address very complex task specifications such as safety, coverage, motion sequencing etc. We use metric temporal logic (MTL) to encode the task specifications with timing constraints. We then translate the MTL formulae into mixed integer linear constraints and solve the associated optimization problem using a mixed integer linear program solver. We have applied our approach on several case studies in complex dynamical environments subjected to timed temporal specifications. Secondly, we also present a timed automaton based method for planning under the given timed temporal logic specifications. We use metric interval temporal logic (MITL), a member of the MTL family, to represent the task specification, and provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find an optimal motion (or path) sequence for the robot to complete the task.
Resumo:
Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.
Resumo:
Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
Resumo:
The main aim of this paper is to describe an adaptive re-planning algorithm based on a RRT and Game Theory to produce an efficient collision free obstacle adaptive Mission Path Planner for Search and Rescue (SAR) missions. This will provide UAV autopilots and flight computers with the capability to autonomously avoid static obstacles and No Fly Zones (NFZs) through dynamic adaptive path replanning. The methods and algorithms produce optimal collision free paths and can be integrated on a decision aid tool and UAV autopilots.
Resumo:
This invention concerns the control of rotating excavation machinery, for instance to avoid collisions with obstacles. In a first aspect the invention is a control system for autonomous path planning in excavation machinery, comprising: A map generation subsystem to receive data from an array of disparate and complementary sensors to generate a 3-Dimensional digital terrain and obstacle map referenced to a coordinate frame related to the machine's geometry, during normal operation of the machine. An obstacle detection subsystem to find and identify obstacles in the digital terrain and obstacle map, and then to refine the map by identifying exclusion zones that are within reach of the machine during operation. A collision detection subsystem that uses knowledge of the machine's position and movements, as well as the digital terrain and obstacle map, to identify and predict possible collisions with itself or other obstacles, and then uses a forward motion planner to predict collisions in a planned path. And, a path planning subsystem that uses information from the other subsystems to vary planned paths to avoid obstacles and collisions. In other aspects the invention is excavation machinery including the control system; a method for control of excavation machinery; and firmware and software versions of the control system.
Resumo:
Sampling based planners have been successful in path planning of robots with many degrees of freedom, but still remains ineffective when the configuration space has a narrow passage. We present a new technique based on a random walk strategy to generate samples in narrow regions quickly, thus improving efficiency of Probabilistic Roadmap Planners. The algorithm substantially reduces instances of collision checking and thereby decreases computational time. The method is powerful even for cases where the structure of the narrow passage is not known, thus giving significant improvement over other known methods.
Resumo:
This article addresses the problem of determining the shortest path that connects a given initial configuration (position, heading angle, and flight path angle) to a given rectilinear or a circular path in three-dimensional space for a constant speed and turn-rate constrained aerial vehicle. The final path is assumed to be located relatively far from the starting point. Due to its simplicity and low computational requirements the algorithm can be implemented on a fixed-wing type unmanned air vehicle in real time in missions where the final path may change dynamically. As wind has a very significant effect on the flight of small aerial vehicles, the method of optimal path planning is extended to meet the same objective in the presence of wind comparable to the speed of the aerial vehicles. But, if the path to be followed is closer to the initial point, an off-line method based on multiple shooting, in combination with a direct transcription technique, is used to obtain the optimal solution. Optimal paths are generated for a variety of cases to show the efficiency of the algorithm. Simulations are presented to demonstrate tracking results using a 6-degrees-of-freedom model of an unmanned air vehicle.
Resumo:
Manipulator motion planning is a task which relies heavily on the construction of a configuration space prior to path planning. However when fast real-time motion is needed, the full construction of the manipulator's high-dimensional configu-ration space can be too slow and expensive. Alternative planning methods, which avoid this full construction of the manipulator's configuration space are needed to solve this problem. Here, one such existing local planning method for manipulators based on configuration-sampling and subgoal-selection has been extended. Using a modified Artificial Potential Fields (APF) function, goal-configuration sampling and a novel subgoal selection method, it provides faster, more optimal paths than the previously proposed work. Simulation results show a decrease in both runtime and path lengths, along with a decrease in unexpected local minimum and crashing issues.
Resumo:
Purpose: Respiratory motion causes substantial uncertainty in radiotherapy treatment planning. Four-dimensional computed tomography (4D-CT) is a useful tool to image tumor motion during normal respiration. Treatment margins can be reduced by targeting the motion path of the tumor. The expense and complexity of 4D-CT, however, may be cost-prohibitive at some facilities. We developed an image processing technique to produce images from cine CT that contain significant motion information without 4D-CT. The purpose of this work was to compare cine CT and 4D-CT for the purposes of target delineation and dose calculation, and to explore the role of PET in target delineation of lung cancer. Methods: To determine whether cine CT could substitute 4D-CT for small mobile lung tumors, we compared target volumes delineated by a physician on cine CT and 4D-CT for 27 tumors with intrafractional motion greater than 1 cm. We assessed dose calculation by comparing dose distributions calculated on respiratory-averaged cine CT and respiratory-averaged 4D-CT using the gamma index. A threshold-based PET segmentation model of size, motion, and source-to-background was developed from phantom scans and validated with 24 lung tumors. Finally, feasibility of integrating cine CT and PET for contouring was assessed on a small group of larger tumors. Results: Cine CT to 4D-CT target volume ratios were (1.05±0.14) and (0.97±0.13) for high-contrast and low-contrast tumors respectively which was within intraobserver variation. Dose distributions on cine CT produced good agreement (< 2%/1 mm) with 4D-CT for 71 of 73 patients. The segmentation model fit the phantom data with R2 = 0.96 and produced PET target volumes that matched CT better than 6 published methods (-5.15%). Application of the model to more complex tumors produced mixed results and further research is necessary to adequately integrate PET and cine CT for delineation. Conclusions: Cine CT can be used for target delineation of small mobile lesions with minimal differences to 4D-CT. PET, utilizing the segmentation model, can provide additional contrast. Additional research is required to assess the efficacy of complex tumor delineation with cine CT and PET. Respiratory-averaged cine CT can substitute respiratory-averaged 4D-CT for dose calculation with negligible differences.