913 resultados para Monitoring the grinding process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we propose a new statistic to control the covariance matrix of bivariate processes. This new statistic is based on the sample vat-lances of the two quality characteristics, shortly VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these two variances. The reasons to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar are faster detection of process changes and better diagnostic feature, that is, with the VMAX statistic It is easier to identify the out-of-control variable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results are reported of the behaviour of the plane tangential grinding process using diamond grinding wheels. Grinding performance is analysed in terms of the wear behaviour of the wheel in the grinding of ceramic. Discussion of the results concentrates on the wear mechanism of the diamond wheel and the process of material removal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work uses a monitoring system based on a PC platform, where the acoustic emission and electric power signals generated during the grinding process are used to investigate superficial burning occurrence in a surface grinding operation using two types of steel, three grinding conditions and an Al203 vitrified grinding wheel. Acoustic emission signals on the workpiece and grinding power were measured during a surface plunge operation until the grinding burn happened. From the results the standard deviation of the acoustic emission signal and the maximum electric power were calculated for each grinding pass. The proposed DPO parameter is the product between the power level and acoustic emission standard deviation. The results show that both signals can be used for burning detection, and the parameter DPO is the best indicator for the burning studied in this work. This can be explained by the high dispersion of the acoustic emission RMS level associated to the high power consumption when the grinding wheel lose its sharpness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the high industrial competitiveness, the rigorous laws of environmental protection, the necessary reduction of costs, the mechanical industry sees itself forced to worry more and more with the refinement of your processes and products. In this context, can be mentioned the need to eliminate the roundness errors that appear after the grinding process. This work has the objective of verifying if optimized nozzles for the application of cutting fluid in the grinding process can minimize the formation of the roundness errors and the diametrical wear of grinding wheel in the machining of the steel VC 131 with 60 HRc, when compared to the conventional nozzles. These nozzles were analyzed using two types of grinding wheels and two different cutting fluids. Was verified that the nozzle of 3mm of diameter, integral oil and the CBN grinding wheel, were the best options to obtain smaller roundness errors and the lowest diametrical wears of grinding wheels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior of the minimum quantity lubricant (MQL) technique was analyzed under different lubricating and cooling conditions when grinding ABNT 4340 steel. The comparative analysis of the residual stress values showed that residual compressive stresses were obtained under all the lubrication/cooling conditions and types of abrasive tools employed. The highest residual compressive stress obtained with the aluminum oxide grinding wheel with MQL under the condition of V= 30m/s for air and V= 40ml/h for lubricant was -376MPa against the -160MPa attained with conventional cooling, representing a 135% increase in residual compressive stress. The results show that method and quantity of lubricant and cooling are factors that influence the grinding process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several systems are currently tested in order to obtain a feasible and safe method for automation and control of grinding process. This work aims to predict the surface roughness of the parts of SAE 1020 steel ground in a surface grinding machine. Acoustic emission and electrical power signals were acquired by a commercial data acquisition system. The former from a fixed sensor placed near the workpiece and the latter from the electric induction motor that drives the grinding wheel. Both signals were digitally processed through known statistics, which with the depth of cut composed three data sets implemented to the artificial neural networks. The neural network through its mathematical logical system interpreted the signals and successful predicted the workpiece roughness. The results from the neural networks were compared to the roughness values taken from the worpieces, showing high efficiency and applicability on monitoring and controlling the grinding process. Also, a comparison among the three data sets was carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a methodology for predicting the surface roughness of advanced ceramics using Adaptive Neuro-Fuzzy Inference System (ANFIS). To this end, a grinding machine was used, equipped with an acoustic emission sensor and a power transducer connected to the electric motor rotating the diamond grinding wheel. The alumina workpieces used in this work were pressed and sintered into rectangular bars. Acoustic emission and cutting power signals were collected during the tests and digitally processed to calculate the mean, standard deviation, and two other statistical data. These statistics, as well the root mean square of the acoustic emission and cutting power signals were used as input data for ANFIS. The output values of surface roughness (measured during the tests) were implemented for training and validation of the model. The results indicated that an ANFIS network is an excellent tool when applied to predict the surface roughness of ceramic workpieces in the grinding process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceramic parts are increasingly replacing metal parts due to their excellent physical, chemical and mechanical properties, however they also make them difficult to manufacture by traditional machining methods. The developments carried out in this work are used to estimate tool wear during the grinding of advanced ceramics. The learning process was fed with data collected from a surface grinding machine with tangential diamond wheel and alumina ceramic test specimens, in three cutting configurations: with depths of cut of 120 mu m, 70 mu m and 20 mu m. The grinding wheel speed was 35m/s and the table speed 2.3m/s. Four neural models were evaluated, namely: Multilayer Perceptron, Radial Basis Function, Generalized Regression Neural Networks and the Adaptive Neuro-Fuzzy Inference System. The models'performance evaluation routines were executed automatically, testing all the possible combinations of inputs, number of neurons, number of layers, and spreading. The computational results reveal that the neural models were highly successful in estimating tool wear, since the errors were lower than 4%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we present a new control chart for monitoring the covariance matrix in a bivariate process. In this method, n observations of the two variables were considered as if they came from a single variable (as a sample of 2n observations), and a sample variance was calculated. This statistic was used to build a new control chart specifically as a VMIX chart. The performance of the new control chart was compared with its main competitors: the generalized sampled variance chart, the likelihood ratio test, Nagao's test, probability integral transformation (v(t)), and the recently proposed VMAX chart. Among these statistics, only the VMAX chart was competitive with the VMIX chart. For shifts in both variances, the VMIX chart outperformed VMAX; however, VMAX showed better performance for large shifts (higher than 10%) in one variance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major concern of electrocatalysis research is to assess the structural and chemical changes that a catalyst may itself undergo in the course of the catalyzed process. These changes can influence not only the activity of the studied catalyst but also its selectivity toward the formation of a certain product. An illustrative example is the electroreduction of carbon dioxide on tin oxide nanoparticles, where under the operating conditions of the electrolysis (that is, at cathodic potentials), the catalyst undergoes structural changes which, in an extreme case, involve its reduction to metallic tin. This results in a decreased Faradaic efficiency (FE) for the production of formate (HCOO–) that is otherwise the main product of CO2 reduction on SnOx surfaces. In this study, we utilized potential- and time-dependent in operando Raman spectroscopy in order to monitor the oxidation state changes of SnO2 that accompany CO2 reduction. Investigations were carried out at different alkaline pH levels, and a strong correlation between the oxidation state of the surface and the FE of HCOO– formation was found. At moderately cathodic potentials, SnO2 exhibits a high FE for the production of formate, while at very negative potentials the oxide is reduced to metallic Sn, and the efficiency of formate production is significantly decreased. Interestingly, the highest FE of formate production is measured at potentials where SnO2 is thermodynamically unstable; however, its reduction is kinetically hindered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coagulation of milk is the fundamental process in cheese-making, based on a gel formation as consequence of physicochemical changes taking place in the casein micelles, the monitoring the whole process of milk curd formation is a constant preoccupation for dairy researchers and cheese companies (Lagaude et al., 2004). In addition to advances in composition-based applications of near infrared spectroscopy (NIRS), innovative uses of this technology are pursuing dynamic applications that show promise, especially in regard to tracking a sample in situ during food processing (Bock and Connelly, 2008). In this way the literature describes cheese making process applications of NIRS for curd cutting time determination, which conclude that NIRS would be a suitable method of monitoring milk coagulation, as shown i.e. the works published by Fagan et al. (Fagan et al., 2008; Fagan et al., 2007), based in the use of the commercial CoAguLite probe (with a LED at 880nm and a photodetector for light reflectance detection).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tool wear detection is a key issue for tool condition monitoring. The maximization of useful tool life is frequently related with the optimization of machining processes. This paper presents two model-based approaches for tool wear monitoring on the basis of neuro-fuzzy techniques. The use of a neuro-fuzzy hybridization to design a tool wear monitoring system is aiming at exploiting the synergy of neural networks and fuzzy logic, by combining human reasoning with learning and connectionist structure. The turning process that is a well-known machining process is selected for this case study. A four-input (i.e., time, cutting forces, vibrations and acoustic emissions signals) single-output (tool wear rate) model is designed and implemented on the basis of three neuro-fuzzy approaches (inductive, transductive and evolving neuro-fuzzy systems). The tool wear model is then used for monitoring the turning process. The comparative study demonstrates that the transductive neuro-fuzzy model provides better error-based performance indices for detecting tool wear than the inductive neuro-fuzzy model and than the evolving neuro-fuzzy model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research developed in this work consists in proposing a set of techniques for management of social networks and their integration into the educational process. The proposals made are based on assumptions that have been proven with simple examples in a real scenario of university teaching. The results show that social networks have more capacity to spread information than educational web platforms. Moreover, educational social networks are developed in a context of freedom of expression intrinsically linked to Internet freedom. In that context, users can write opinions or comments which are not liked by the staff of schools. However, this feature can be exploited to enrich the educational process and improve the quality of their achievement. The network has covered needs and created new ones. So, the figure of the Community Manager is proposed as agent in educational context for monitoring network and aims to channel the opinions and to provide a rapid response to an academic problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article demonstrates the use of embedded fibre Bragg gratings as vector bending sensor to monitor two-dimensional shape deformation of a shape memory polymer plate. The shape memory polymer plate was made by using thermal-responsive epoxy-based shape memory polymer materials, and the two fibre Bragg grating sensors were orthogonally embedded, one on the top and the other on the bottom layer of the plate, in order to measure the strain distribution in both longitudinal and transverse directions separately and also with temperature reference. When the shape memory polymer plate was bent at different angles, the Bragg wavelengths of the embedded fibre Bragg gratings showed a red-shift of 50 pm/°caused by the bent-induced tensile strain on the plate surface. The finite element method was used to analyse the stress distribution for the whole shape recovery process. The strain transfer rate between the shape memory polymer and optical fibre was also calculated from the finite element method and determined by experimental results, which was around 0.25. During the experiment, the embedded fibre Bragg gratings showed very high temperature sensitivity due to the high thermal expansion coefficient of the shape memory polymer, which was around 108.24 pm/°C below the glass transition temperature (Tg) and 47.29 pm/°C above Tg. Therefore, the orthogonal arrangement of the two fibre Bragg grating sensors could provide a temperature compensation function, as one of the fibre Bragg gratings only measures the temperature while the other is subjected to the directional deformation. © The Author(s) 2013.