932 resultados para Moment Closure


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Direct Numerical Simulations (DNS) of turbulent n-heptane sprays autoigniting at high pressure (P=24bar) and intermediate air temperature (Tair=1000K) have been performed to investigate the physical mechanisms present under conditions where low-temperature chemistry is expected to be important. The initial turbulence in the carrier gas, the global equivalence ratio in the spray region, and the initial droplet size distribution of the spray were varied. Results show that spray ignition exhibits a spotty nature, with several kernels developing independently in those regions where the mixture fraction is close to its most reactive value ξMR (as determined from homogeneous reactor calculations) and the scalar dissipation rate is low. Turbulence reduces the ignition delay time as it promotes mixing between air and the fuel vapor, eventually resulting in lower values of scalar dissipation. High values of the global equivalence ratio are responsible for a larger number of ignition kernels, due to the higher probability of finding regions where ξ=ξMR. Spray polydispersity results in the occurrence of ignition over a wider range of mixture fraction values. This is a consequence of the inhomogeneities in the mixing field that characterize these sprays, where poorly mixed rich spots are seen to alternate with leaner ones which are well-mixed. The DNS simulations presented in this work have also been used to assess the applicability of the Conditional Moment Closure (CMC) method to the simulation of spray combustion. CMC is found to be a valid method for capturing spray autoignition, although care should be taken in the modelling of the unclosed terms appearing in the CMC equations. © 2013 The Combustion Institute.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of the turbulence-chemistry interaction (TCI) for n-heptane sprays under diesel engine conditions has been investigated by means of computational fluid dynamics (CFD) simulations. The conditional moment closure approach, which has been previously validated thoroughly for such flows, and the homogeneous reactor (i.e. no turbulent combustion model) approach have been compared, in view of the recent resurgence of the latter approaches for diesel engine CFD. Experimental data available from a constant-volume combustion chamber have been used for model validation purposes for a broad range of conditions including variations in ambient oxygen (8-21% by vol.), ambient temperature (900 and 1000 K) and ambient density (14.8 and 30 kg/m3). The results from both numerical approaches have been compared to the experimental values of ignition delay (ID), flame lift-off length (LOL), and soot volume fraction distributions. TCI was found to have a weak influence on ignition delay for the conditions simulated, attributed to the low values of the scalar dissipation relative to the critical value above which auto-ignition does not occur. In contrast, the flame LOL was considerably affected, in particular at low oxygen concentrations. Quasi-steady soot formation was similar; however, pronounced differences in soot oxidation behaviour are reported. The differences were further emphasised for a case with short injection duration: in such conditions, TCI was found to play a major role concerning the soot oxidation behaviour because of the importance of soot-oxidiser structure in mixture fraction space. Neglecting TCI leads to a strong over-estimation of soot oxidation after the end of injection. The results suggest that for some engines, and for some phenomena, the neglect of turbulent fluctuations may lead to predictions of acceptable engineering accuracy, but that a proper turbulent combustion model is needed for more reliable results. © 2014 Taylor & Francis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The focus of the present work is the well-known feature of the probability density function (PDF) transport equations in turbulent flows-the inverse parabolicity of the equations. While it is quite common in fluid mechanics to interpret equations with direct (forward-time) parabolicity as diffusive (or as a combination of diffusion, convection and reaction), the possibility of a similar interpretation for equations with inverse parabolicity is not clear. According to Einstein's point of view, a diffusion process is associated with the random walk of some physical or imaginary particles, which can be modelled by a Markov diffusion process. In the present paper it is shown that the Markov diffusion process directly associated with the PDF equation represents a reasonable model for dealing with the PDFs of scalars but it significantly underestimates the diffusion rate required to simulate turbulent dispersion when the velocity components are considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a positive, accurate moment closure for linear kinetic transport equations based on a filtered spherical harmonic (FP_N) expansion in the angular variable. The FP_N moment equations are accurate approximations to linear kinetic equations, but they are known to suffer from the occurrence of unphysical, negative particle concentrations. The new positive filtered P_N (FP_N+) closure is developed to address this issue. The FP_N+ closure approximates the kinetic distribution by a spherical harmonic expansion that is non-negative on a finite, predetermined set of quadrature points. With an appropriate numerical PDE solver, the FP_N+ closure generates particle concentrations that are guaranteed to be non-negative. Under an additional, mild regularity assumption, we prove that as the moment order tends to infinity, the FP_N+ approximation converges, in the L2 sense, at the same rate as the FP_N approximation; numerical tests suggest that this assumption may not be necessary. By numerical experiments on the challenging line source benchmark problem, we confirm that the FP_N+ method indeed produces accurate and non-negative solutions. To apply the FP_N+ closure on problems at large temporal-spatial scales, we develop a positive asymptotic preserving (AP) numerical PDE solver. We prove that the propose AP scheme maintains stability and accuracy with standard mesh sizes at large temporal-spatial scales, while, for generic numerical schemes, excessive refinements on temporal-spatial meshes are required. We also show that the proposed scheme preserves positivity of the particle concentration, under some time step restriction. Numerical results confirm that the proposed AP scheme is capable for solving linear transport equations at large temporal-spatial scales, for which a generic scheme could fail. Constrained optimization problems are involved in the formulation of the FP_N+ closure to enforce non-negativity of the FP_N+ approximation on the set of quadrature points. These optimization problems can be written as strictly convex quadratic programs (CQPs) with a large number of inequality constraints. To efficiently solve the CQPs, we propose a constraint-reduced variant of a Mehrotra-predictor-corrector algorithm, with a novel constraint selection rule. We prove that, under appropriate assumptions, the proposed optimization algorithm converges globally to the solution at a locally q-quadratic rate. We test the algorithm on randomly generated problems, and the numerical results indicate that the combination of the proposed algorithm and the constraint selection rule outperforms other compared constraint-reduced algorithms, especially for problems with many more inequality constraints than variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variational approach to the closure problem of turbulence theory, proposed in an earlier article [Phys. Fluids 26, 2098 (1983); 27, 2229 (1984)], is extended to evaluate the flatness factor, which indicates the degree of intermittency of turbulence. Since the flatness factor is related to the fourth moment of a turbulent velocity field, the corresponding higher-order terms in the perturbation solution of the Liouville equation have to be considered. Most closure methods discard these higher-order terms and fail to explain the intermittency phenomenon. The computed flatness factor of the idealized model of infinite isotropic turbulence ranges from 9 to 15 and has the same order of magnitude as the experimental data of real turbulent flows. The intermittency phenomenon does not necessarily negate the Kolmogorov k−5/3 inertial range spectrum. The Kolmogorov k−5/3 law and the high degree of intermittency can coexist as two consistent consequences of the closure theory of turbulence. The Kolmogorov 1941 theory [J. Fluid Mech. 62, 305 (1974)] cannot be disqualified merely because the energy dissipation rate fluctuates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis addresses the problem of synthesizing grasps that are force-closure and stable. The synthesis of force-closure grasps constructs independent regions of contact for the fingertips, such that the motion of the grasped object is totally constrained. The synthesis of stable grasps constructs virtual springs at the contacts, such that the grasped object is stable, and has a desired stiffness matrix about its stable equilibrium. A grasp on an object is force-closure if and only if we can exert, through the set of contacts, arbitrary forces and moments on the object. So force-closure implies equilibrium exists because zero forces and moment is spanned. In the reverse direction, we prove that a non-marginal equilibrium grasp is also a force-closure grasp, if it has at least two point contacts with friction in 2D, or two soft-finger contacts or three hard-finger contacts in 3D. Next, we prove that all force-closure grasps can be made stable, by using either active or passive springs at the contacts. The thesis develops a simple relation between the stability and stiffness of the grasp and the spatial configuration of the virtual springs at the contacts. The stiffness of the grasp depends also on whether the points of contact stick, or slide without friction on straight or curved surfaces of the object. The thesis presents fast and simple algorithms for directly constructing stable fore-closure grasps based on the shape of the grasped object. The formal framework of force-closure and stable grasps provides a partial explanation to why we stably grasp objects to easily, and to why our fingers are better soft than hard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perceptual closure refers to the coherent perception of an object under circumstances when the visual information is incomplete. Although the perceptual closure index observed in electroencephalography reflects that an object has been recognized, the full spatiotemporal dynamics of cortical source activity underlying perceptual closure processing remain unknown so far. To address this question, we recorded magnetoencephalographic activity in 15 subjects (11 females) during a visual closure task and performed beamforming over a sequence of successive short time windows to localize high-frequency gamma-band activity (60–100 Hz). Two-tone images of human faces (Mooney faces) were used to examine perceptual closure. Event-related fields exhibited a magnetic closure index between 250 and 325 ms. Time-frequency analyses revealed sustained high-frequency gamma-band activity associated with the processing of Mooney stimuli; closure-related gamma-band activity was observed between 200 and 300 ms over occipitotemporal channels. Time-resolved source reconstruction revealed an early (0–200 ms) coactivation of caudal inferior temporal gyrus (cITG) and regions in posterior parietal cortex (PPC). At the time of perceptual closure (200–400 ms), the activation in cITG extended to the fusiform gyrus, if a face was perceived. Our data provide the first electrophysiological evidence that perceptual closure for Mooney faces starts with an interaction between areas related to processing of three-dimensional structure from shading cues (cITG) and areas associated with the activation of long-term memory templates (PPC). Later, at the moment of perceptual closure, inferior temporal cortex areas specialized for the perceived object are activated, i.e., the fusiform gyrus related to face processing for Mooney stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Any cycle of production and exchange – be it economic, cultural or aesthetic – involves an element of risk. It involves uncertainty, unpredictability, and a potential for new insight and innovation (the boom) as well as blockages, crises and breakdown (the bust). In performance, the risks are plentiful – economic, political, social, physical and psychological. The risks people are willing to take depend on their position in the exchange (performer, producer, venue manager or spectator), and their aesthetic preferences. This paper considers the often uncertain, confronting or ‘risky’ moment of exchange between performer, spectator and culture in Live Art practices. Encompassing body art, autobiographical art, site-specific art and other sorts of performative intervention in the public sphere, Live Art eschews the artifice of theatre, breaking down barriers between art and life, artist and spectator, to speak back to the public sphere, and challenge assumptions about bodies, identities, memories, relationships and histories. In the process, Live Art frequently privileges an uncertain, confrontational or ‘risky’ mode of exchange between performer, spectator and culture, as a way of challenging power structures. This paper examines the moment of exchange in terms of risk, vulnerability, responsibility and ethics. Why the romance with ‘risky’ behaviours and exchanges? Who is really taking a risk? What risk? With whose permission (or lack thereof)? What potential does a ‘risky’ exchange hold to destabilise aesthetic, social or political norms? Where lies the fine line between subversive intervention in the public sphere and sheer self-indulgence? What are the social and ethical implications of a moment of exchange that puts bodies, beliefs or social boundaries at ‘risk’? In this paper, these questions are addressed with reference to historical and contemporary practices under the broadly defined banner of Live Art, from the early work of Abrovamic and Burden, through to contemporary Australian practitioners like Fiona McGregor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flexural capacity of of a new cold-formed hollow flange channel section known as LiteSteel beam (LSB) is limited by lateral distortional buckling for intermediate spans, which is characterised by simultaneous lateral deflection, twist and web distortion. Recent research has developed suitable design rules for the member capacity of LSBs. However, they are limited to a uniform moment distribution that rarely exists in practice. Many steel design codes have adopted equivalent uniform moment distribution factors to accommodate the effect of non-uniform moment distributions in design. But they were derived mostly based on the data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The effect of moment distribution for LSBs, and the suitability of the current steel design code rules to include this effect for LSBs are not yet known. This paper presents the details of a research study based on finite element analyses of the lateral buckling strength of simply supported LSBs subject to moment gradient effects. It also presents the details of a number of LSB lateral buckling experiments undertaken to validate the results of finite element analyses. Finally, it discusses the suitability of the current design methods, and provides design recommendations for simply supported LSBs subject to moment gradient effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is aimed at investigating the effect of web openings on the plastic bending behaviour and section moment capacity of a new cold-formed steel beam known as LiteSteel beam (LSB) using numerical modelling. Different LSB sections with varying circular hole diameter and spacing were considered. A simplified but appropriate numerical modelling technique was developed for the modelling of monosymmetric sections such as LSBs subject to bending, and was used to simulate a series of section moment capacity tests of LSB flexural members with web openings. The buckling and ultimate strength behaviour was investigated in detail and the modeling technique was further improved through a comparison of numerical and experimental results. This paper describes the simplified finite element modeling technique used in this study that includes all the significant behavioural effects affecting the plastic bending behaviour and section moment capacity of LSB sections with web holes. Numerical and test results and associated findings are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was aimed at examining the safety climate and relational conflict within teams at the individual level. A sample of 372 respondents, divided into 50 teams, was used to test our hypothesis. It was proposed - and discovered - that team members’ individual differences in need for closure mitigated the negative relationship between perceptions of team safety climate and team relational conflict. The implications of our findings and the study’s limitations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper engages with the literature on emotional geographies to report on a case study of the emotions surrounding the closure of a nickel mine in the shire of Ravensthorpe in the south-west of Western Australia in January 2009. Two themes from the affect-infused narratives of pre- and post-mine community members are outlined. The first, which challenges constructions of the closure as a purely industrial and economic concern, focuses on the intense feelings the shut-down invoked amongst participants. The second theme explores the way in which the owner of the mine, BHP Billiton, worked to suppress and regulate affective reactions to the closure and thus reveals the highly political nature of emotions.