898 resultados para Molecular-genetic Evidence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two kinds of process models have been used in programs that reason about change: Discrete and continuous models. We describe the design and implementation of a qualitative simulator, PEPTIDE, which uses both kinds of process models to predict the behavior of molecular energetic systems. The program uses a discrete process model to simulate both situations involving abrupt changes in quantities and the actions of small numbers of molecules. It uses a continuous process model to predict gradual changes in quantities. A novel technique, called aggregation, allows the simulator to switch between theses models through the recognition and summary of cycles. The flexibility of PEPTIDE's aggregator allows the program to detect cycles within cycles and predict the behavior of complex situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colorectal cancer is the most common cause of death due to malignancy in nonsmokers in the western world. In 1995 there were 1,757 cases of colon cancer in Ireland. Most colon cancer is sporadic, however ten percent of cases occur where there is a previous family history of the disease. In an attempt to understand the tumorigenic pathway in Irish colon cancer patients, a number of genes associated with colorectal cancer development were analysed in Irish sporadic and HNPCC colon cancer patients. The hereditary forms of colon cancer include Familial adenomatous polyposis coli (FAP) and Hereditary Non-Polyposis Colon Cancer (HNPCC). Genetic analysis of the gene responsible for FAP, (the APC gene) has been previously performed on Irish families, however the genetic analysis of HNPCC families is limited. In an attempt to determine the mutation spectrum in Irish HNPCC pedigrees, the hMSH2 and hMLHl mismatch repair genes were screened in 18 Irish HNPCC families. Using SSCP analysis followed by DNA sequencing, five mutations were identified, four novel and a previously reported mutation. In families where a mutation was detected, younger asyptomatic members were screened for the presence of the predisposing mutation (where possible). Detection of mutations is particularly important for the identification of at risk individuals as the early diagnosis of cancer can vastly improve the prognosis. The sensitive and efficient detection of multiple different mutations and polymorphisms in DNA is of prime importance for genetic diagnosis and the identification of disease genes. A novel mutation detection technique has recently been developed in our laboratory. In order to assess the efficacy and application of the methodology in the analysis of cancer associated genes, a protocol for the analysis of the K-ras gene was developed and optimised. Matched normal and tumour DNA from twenty sporadic colon cancer patients was analysed for K-ras mutations using the Glycosylase Mediated Polymorphism Detection technique. Five mutations of the K-ras gene were detected using this technology. Sequencing analysis verified the presence of the mutations and SSCP analysis of the same samples did not identify any additional mutations. The GMPD technology proved to be highly sensitive, accurate and efficient in the identification of K-ras gene mutations. In order to investigate the role of the replication error phenomenon in Irish colon cancer, 3 polyA tract repeat loci were analysed. The repeat loci included a 10 bp intragenic repeat of the TGF-β-RII gene. TGF-β-RII is involved in the TGF-β epithelial cell growth pathway and mutation of the gene is thought to play a role in cell proliferation and tumorigenesis. Due to the presence of a repeat sequence within the gene, TGFB-RII defects are associated with tumours that display the replication error phenomenon. Analysis of the TGF-β-RII 10 bp repeat failed to identify mutations in any colon cancer patients. Analysis of the Bat26 and Bat 40 polyA repeat sequences in the sporadic and HNPCC families revealed that instability is associated with HNPCC tumours harbouring mismatch repair defects and with 20 % of sporadic colon cancer tumours. No correlation between K-ras gene mutations and the RER+ phenotype was detected in sporadic colon cancer tumours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity has been posited as an independent risk factor for diabetic kidney disease (DKD), but establishing causality from observational data is problematic. We aimed to test whether obesity is causally related to DKD using Mendelian randomization, which exploits the random assortment of genes during meiosis. In 6,049 subjects with type 1 diabetes, we used a weighted genetic risk score (GRS) comprised of 32 validated BMI loci as an instrument to test the relationship of BMI with macroalbuminuria, end-stage renal disease (ESRD), or DKD defined as presence of macroalbuminuria or ESRD. We compared these results with cross-sectional and longitudinal observational associations. Longitudinal analysis demonstrated a U-shaped relationship of BMI with development of macroalbuminuria, ESRD, or DKD over time. Cross-sectional observational analysis showed no association with overall DKD, higher odds of macroalbuminuria (for every 1 kg/m(2) higher BMI, odds ratio [OR] 1.05, 95% CI 1.03-1.07, P < 0.001), and lower odds of ESRD (OR 0.95, 95% CI 0.93-0.97, P < 0.001). Mendelian randomization analysis showed a 1 kg/m(2) higher BMI conferring an increased risk in macroalbuminuria (OR 1.28, 95% CI 1.11-1.45, P = 0.001), ESRD (OR 1.43, 95% CI 1.20-1.72, P < 0.001), and DKD (OR 1.33, 95% CI 1.17-1.51, P < 0.001). Our results provide genetic evidence for a causal link between obesity and DKD in type 1 diabetes. As obesity prevalence rises, this finding predicts an increase in DKD prevalence unless intervention should occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS) to investigate shared single nucleotide polymorphisms (SNPs) between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals), applying new False Discovery Rate (FDR) methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG), low density lipoproteins (LDL), high density lipoproteins (HDL)] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis). We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88), LDL (n = 87) and HDL (n = 52). Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2) and intestinal host-microbe interactions (e.g. ATG16L1). We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish belonging to the genus Macroramphosus are distributed throughout the Atlantic, Indian and PaciWc oceans. Some authors consider this genus monotypic, Macroramphosus scolopax being the only valid species. Other authors consider (based on several morphological and ecological characters) that another species (Macroramphosus gracilis) exists and occurs frequently in sympatry with the Wrst one. Intermediate forms are also reported in literature. In this paper, using the mitochondrial control region and the nuclear Wrst S7 intron markers, we failed to Wnd genetic diVerences between individuals considered to belong to both species as well as the intermediate forms. Our results suggest that in the northeastern Atlantic, Macroramphosus is represented by a single species, M. scolopax, with diVerent morphotypes interbreeding in the sampling areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal