984 resultados para Molecular pathway
Resumo:
The overarching goal of the Pathway Semantics Algorithm (PSA) is to improve the in silico identification of clinically useful hypotheses about molecular patterns in disease progression. By framing biomedical questions within a variety of matrix representations, PSA has the flexibility to analyze combined quantitative and qualitative data over a wide range of stratifications. The resulting hypothetical answers can then move to in vitro and in vivo verification, research assay optimization, clinical validation, and commercialization. Herein PSA is shown to generate novel hypotheses about the significant biological pathways in two disease domains: shock / trauma and hemophilia A, and validated experimentally in the latter. The PSA matrix algebra approach identified differential molecular patterns in biological networks over time and outcome that would not be easily found through direct assays, literature or database searches. In this dissertation, Chapter 1 provides a broad overview of the background and motivation for the study, followed by Chapter 2 with a literature review of relevant computational methods. Chapters 3 and 4 describe PSA for node and edge analysis respectively, and apply the method to disease progression in shock / trauma. Chapter 5 demonstrates the application of PSA to hemophilia A and the validation with experimental results. The work is summarized in Chapter 6, followed by extensive references and an Appendix with additional material.
Resumo:
The Fas/APO-1-receptor associated cysteine protease Mch5 (MACH/FLICE) is believed to be the enzyme responsible for activating a protease cascade after Fas-receptor ligation, leading to cell death. The Fas-apoptotic pathway is potently inhibited by the cowpox serpin CrmA, suggesting that Mch5 could be the target of this serpin. Bacterial expression of proMch5 generated a mature enzyme composed of two subunits, which are derived from the precursor proenzyme by processing at Asp-227, Asp-233, Asp-391, and Asp-401. We demonstrate that recombinant Mch5 is able to process/activate all known ICE/Ced-3-like cysteine proteases and is potently inhibited by CrmA. This contrasts with the observation that Mch4, the second FADD-related cysteine protease that is also able to process/activate all known ICE/Ced-3-like cysteine proteases, is poorly inhibited by CrmA. These data suggest that Mch5 is the most upstream protease that receives the activation signal from the Fas-receptor to initiate the apoptotic protease cascade that leads to activation of ICE-like proteases (TX, ICE, and ICE-relIII), Ced-3-like proteases (CPP32, Mch2, Mch3, Mch4, and Mch6), and the ICH-1 protease. On the other hand, Mch4 could be a second upstream protease that is responsible for activation of the same protease cascade in CrmA-insensitive apoptotic pathways.
Resumo:
Fourteen different genes included in a DNA fragment of 18 kb are involved in the aerobic degradation of phenylacetic acid by Pseudomonas putida U. This catabolic pathway appears to be organized in three contiguous operons that contain the following functional units: (i) a transport system, (ii) a phenylacetic acid activating enzyme, (iii) a ring-hydroxylation complex, (iv) a ring-opening protein, (v) a β-oxidation-like system, and (vi) two regulatory genes. This pathway constitutes the common part (core) of a complex functional unit (catabolon) integrated by several routes that catalyze the transformation of structurally related molecules into a common intermediate (phenylacetyl-CoA).
Resumo:
The thiol tripeptides, glutathione (GSH) and homoglutathione (hGSH), perform multiple roles in legumes, including protection against toxicity of free radicals and heavy metals. The three genes involved in the synthesis of GSH and hGSH in the model legume, Lotus japonicus, have been fully characterized and appear to be present as single copies in the genome. The gamma-glutamylcysteine synthetase (gammaecs) gene was mapped on the long arm of chromosome 4 (70.0 centimorgans [cM]) and consists of 15 exons, whereas the glutathione synthetase (gshs) and homoglutathione synthetase (hgshs) genes were mapped on the long arm of chromosome 1 (81.3 cM) and found to be arranged in tandem, with a separation of approximately 8 kb. Both genes consist of 12 exons of exactly the same size (except exon 1, which is similar). Two types of transcripts were detected for the gshs gene, which putatively encode proteins localized in the plastids and cytosol. Promoter regions contain cis-acting regulatory elements that may be involved in the plant's response to light, hormones, and stress. Determination of transcript levels, enzyme activities, and thiol contents in nodules, roots, and leaves revealed that gammaecs and hgshs are expressed in all three plant organs, whereas gshs is significantly functional only in nodules. This strongly suggests an important role of GSH in the rhizobia-legume symbiosis.
Resumo:
Low-molecular-weight fucoidan (LMWF) is a sulfated polysaccharide extracted from brown seaweed that presents antithrombotic and pro-angiogenic properties. However, its mechanism of action is not well-characterized. Here, we studied the effects of LMWF on cell signaling and whole genome expression in human umbilical vein endothelial cells and endothelial colony forming cells. We observed that LMWF and vascular endothelial growth factor had synergistic effects on cell signaling, and more interestingly that LMWF by itself, in the absence of other growth factors, was able to trigger the activation of the PI3K/AKT pathway, which plays a crucial role in angiogenesis and vasculogenesis. We also observed that the effects of LMWF on cell migration were PI3K/AKT-dependent and that LMWF modulated the expression of genes involved at different levels of the neovessel formation process, such as cell migration and cytoskeleton organization, cell mobilization and homing. This provides a better understanding of LMWF's mechanism of action and confirms that it could be an interesting therapeutic approach for vascular repair.
Resumo:
Cardiac arrhythmias are one of the main causes of death worldwide. Several studies have shown that inflammation plays a key role in different cardiac diseases and Toll-like receptors (TLRs) seem to be involved in cardiac complications. In the present study, we investigated whether the activation of TLR4 induces cardiac electrical remodeling and arrhythmias, and the signaling pathway involved in these effects. Membrane potential was recorded in Wistar rat ventricle. Ca(2+) transients, as well as the L-type Ca(2+) current (ICaL) and the transient outward K(+) current (Ito), were recorded in isolated myocytes after 24 h exposure to the TLR4 agonist, lipopolysaccharide (LPS, 1 μg/ml). TLR4 stimulation in vitro promoted a cardiac electrical remodeling that leads to action potential prolongation associated with arrhythmic events, such as delayed afterdepolarization and triggered activity. After 24 h LPS incubation, Ito amplitude, as well as Kv4.3 and KChIP2 mRNA levels were reduced. The Ito decrease by LPS was prevented by inhibition of interferon regulatory factor 3 (IRF3), but not by inhibition of interleukin-1 receptor-associated kinase 4 (IRAK4) or nuclear factor kappa B (NF-κB). Extrasystolic activity was present in 25% of the cells, but apart from that, Ca(2+) transients and ICaL were not affected by LPS; however, Na(+)/Ca(2+) exchanger (NCX) activity was apparently increased. We conclude that TLR4 activation decreased Ito, which increased AP duration via a MyD88-independent, IRF3-dependent pathway. The longer action potential, associated with enhanced Ca(2+) efflux via NCX, could explain the presence of arrhythmias in the LPS group.
Resumo:
Phosphatases have long been regarded as tumor suppressors, however there is emerging evidence for a tumor initiating role for some phosphatases in several forms of cancer. Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP; acid phosphatase 1 [ACP1]) is an 18 kDa enzyme that influences the phosphorylation of signaling pathway mediators involved in cancer and is thus postulated to be a tumor-promoting enzyme, but neither unequivocal clinical evidence nor convincing mechanistic actions for a role of LMWPTP have been identified. In the present study, we show that LMWPTP expression is not only significantly increased in colorectal cancer (CRC), but also follows a step-wise increase in different levels of dysplasia. Chemical inhibition of LMWPTP significantly reduces CRC growth. Furthermore, downregulation of LMWPTP in CRC leads to a reduced migration ability in both 2D- and 3D-migration assays, and sensitizes tumor cells to the chemotherapeutic agent 5-FU. In conclusion, this study shows that LMWPTP is not only overexpressed in colorectal cancer, but it is correlated with the malignant potential of this cancer, suggesting that this phosphatase may act as a predictive biomaker of CRC stage and represents a rational novel target in the treatment of this disease.
Resumo:
Maternal high-fat diet (HFD) impairs hippocampal development of offspring promoting decreased proliferation of neural progenitors, in neuronal differentiation, in dendritic spine density and synaptic plasticity reducing neurogenic capacity. Notch signaling pathway participates in molecular mechanisms of the neurogenesis. The activation of Notch signaling leads to the upregulation of Hes5, which inhibits the proliferation and differentiation of neural progenitors. This study aimed to investigate the Notch/Hes pathway activation in the hippocampus of the offspring of dams fed an HFD. Female Swiss mice were fed a control diet (CD) and an HFD from pre-mating until suckling. The bodyweight and mass of adipose tissue in the mothers and pups were also measured. The mRNA and protein expression of Notch1, Hes5, Mash1, and Delta1 in the hippocampus was assessed by RT-PCR and western blotting, respectively. Dams fed the HFD and their pups had an increased bodyweight and amount of adipose tissue. Furthermore, the offspring of mothers fed the HFD exhibited an increased Hes5 expression in the hippocampus compared with CD offspring. In addition, HFD offspring also expressed increased amounts of Notch1 and Hes5 mRNA, whereas Mash1 expression was decreased. However, the expression of Delta1 did not change significantly. We propose that the overexpression of Hes5, a Notch effector, downregulates the expression of the proneural gene Mash1 in the offspring of obese mothers, delaying cellular differentiation. These results provide further evidence that an offspring's hippocampus is molecularly susceptible to maternal HFD and suggest that Notch1 signaling in this brain region is important for neuronal differentiation.
Resumo:
Non-alcoholic fatty liver disease (NAFLD) encompasses the whole spectrum of steatosis, nonalcoholic steatohepatitis (NASH), and NASH-related cirrhosis (NASH/Cir). Although molecular advances have been made in this field, the pathogenesis of NAFLD is not completely understood. The gene expression profiling associated to NASH/Cir was assessed, in an attempt to better characterize the pathways involved in its etiopathogenesis. Methods: In the first step, we used cDNA microarray to evaluate the gene expression profiles in normal liver (n=3) and NASH/Cir samples (n=3) by GeneSifter (TM) analysis to identify differentially expressed genes and biological pathways. Second, tissue microarray was used to determine immunohistochemical expression of phosphorylated mTOR and 4E-BP1 in 11 normal liver samples, 10 NASH/Cir samples and in 37 samples of cirrhosis of other etiologies to further explore the involvement of the mTOR pathway evidenced by the gene expression analysis. Results: 138 and 106 genes were, respectively, up and down regulated in NASH/Cir in comparison to normal liver. Among the 9 pathways identified as significantly modulated in NASH/Cir, the participation of the mTOR pathway was confirmed, since expression of cytoplasmic and membrane phospho-mTOR were higher in NASH/Cir in comparison to cirrhosis of other etiologies and to normal liver. Conclusions: Recent findings have suggested a role for the cellular ""nutrient sensor"" mTOR in NAFLD and the present study corroborates the participation of this pathway in NASH/Cir. Phospho-mTOR evaluation might be of clinical utility as a potential marker for identification of NASH/Cir in cases mistakenly considered as cryptogenic cirrhosis owing to paucity of clinical data.
Resumo:
Background: Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production (IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences. Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an artifact of the techniques used during analysis. Results: 8489 transcripts were detected across the two oocyte groups, of which similar to 25.0% (2117 transcripts) were differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is particularly interesting, therefore, a variety of approaches were employed to determine whether the observed transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the analysis of transcript abundance in oocytes in vitro matured in the presence of a-amanitin. Subsets of the differentially expressed genes were also validated by quantitative real-time PCR (qPCR) and the gene expression data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured counterparts, while ANXA1, PLAU, STC1and LUM were among the over-expressed genes after oocyte maturation. Conclusion: Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte maturation. This dataset provides a unique reference resource for studies concerned with the molecular mechanisms controlling oocyte meiotic maturation in cattle, addresses the existing conflicting issue of transcription during meiotic maturation and contributes to the global goal of improving assisted reproductive technology.
Resumo:
Schistosomes are unable to synthesize purines de novo and depend exclusively on the salvage pathway for their purine requirements. It has been suggested that blockage of this pathway could lead to parasite death. The enzyme purine nucleoside phosphorylase (PNP) is one of its key components and molecules designed to inhibit the low-molecular-weight (LMW) PNPs, which include both the human and schistosome enzymes, are typically analogues of the natural substrates inosine and guanosine. Here, it is shown that adenosine both binds to Schistosoma mansoni PNP and behaves as a weak micromolar inhibitor of inosine phosphorolysis. Furthermore, the first crystal structures of complexes of an LMW PNP with adenosine and adenine are reported, together with those with inosine and hypoxanthine. These are used to propose a structural explanation for the selective binding of adenosine to some LMW PNPs but not to others. The results indicate that transition-state analogues based on adenosine or other 6-amino nucleosides should not be discounted as potential starting points for alternative inhibitors.
Effects of glutamine on the nuclear factor-kappaB signaling pathway of murine peritoneal macrophages
Resumo:
The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappaB (NF-kappa B) signaling pathway of murine peritoneal macrophages. Since glutamine is essential for the normal functioning of macrophages, it was hypothesized that in vitro glutamine supplementation would increase NF-kappa B activation. Peritoneal macrophages were pretreated with glutamine (0, 0.6, 2 and 10 mM) before incubation with lipopolysaccharide (LPS), and the effects of glutamine on the production of tumor necrosis factor-alpha and on the expression and activity of proteins involved in the NF-kappa B signaling pathway were studied by an enzyme linked immuno-sorbent assay, Western blotting, and an electrophoretic mobility shift assay. Glutamine treatment (2 and 10 mM) increased the activation of NF-kappa B in LPS-stimulated peritoneal macrophages (P < 0.05). In non-stimulated cells, glutamine treatment (2 and 10 mM) significantly reduced I kappa B-alpha protein expression (P < 0.05). Glutamine modulates NF-kappa B signaling pathway by reducing the level of I kappa B-alpha, leading to an increase in NF-kappa B within the nucleus in peritoneal macrophages.
Resumo:
p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-inserisitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.
Resumo:
A conformationally biased decapeptide agonist of human C5a anaphylatoxin (YSPKPMPLaR) was used as a molecular adjuvant in stimulating an Ag-specific CTL response against murine P815S target cells expressing an Ld-restricted CTL epitope of the hepatitis B surface Ag (HBsAg), Groups of BALB/c mice (H-2(d)) were immunized with aqueous solutions of the HBsAg CTL epitopes (IPQSLDSWWTSL and IPQSLDSTaVTSLRR); the C5a agonist (YSFKPMPLaR); the C5a agonist and HBsAg CTL epitopes admired (IPQSLDSWWTSL and IPQSLDSWWTSLRR + YSFKPMPLaR); the C5a-active, HBsAg CTL epitope-C5a agonist constructs (IPQSLDSWWTSLYSFKPMPLaR, IPQSLDSWWTSLRRYSFKPMPLaR, and IPQSLDSWWTSLRVRRYSFPMPLaR); a C5a-inactive, reverse-moiety construct (YSFKPMPLaRRRIPQSLDSWWTSL); and a C5a-attenuated, carboxyl-terminal-blocked construct (IPQSLDSWWTSLRRYSFKPMPLaRG). Ag-specific CD8(+) CTL responses were observed after the secondary boost in the absence of any added adjuvant only in mice that were immunized with C5a-active contructs, IPQSLDSWWTSLRRYSFKPMPLaR and IPQSLDSWWTSLRVRRYSFKPMPLaR. These two C5a-active immunogens contained potential subtilisin-sensitive linker sequences between the HBsAg CTL epitope and the C5a agonist; i.e., a double-Arg (RR) and a furin protease sensitive sequence (RVRR), The introduction of these potentially cleavable sequences may be a method of increasing the likelihood of liberating the CTL epitope from the C5a agonist by intracellular proteases, thereby facilitating entry of the epitope into Ag-processing pathways via an exogenous route.