910 resultados para Molecular modeling and simulation
                                
                                
Resumo:
The great expansion in the number of genome sequencing projects has revealed the importance of computational methods to speed up the characterization of unknown genes. These studies have been improved by the use of three dimensional information from the predicted proteins generated by molecular modeling techniques. In this work, we disclose the structure-function relationship of a gene product from Leishmania amazonensis by applying molecular modeling and bioinformatics techniques. The analyzed sequence encodes a 159 aminoacids polypeptide (estimated 18 kDa) and was denoted LaPABP for its high homology with poly-A binding proteins from trypanosomatids. The domain structure, clustering analysis and a three dimensional model of LaPABP, basically obtained by homology modeling on the structure of the human poly-A binding protein, are described. Based on the analysis of the electrostatic potential mapped on the model's surface and conservation of intramolecular contacts responsible for folding stabilization we hypothesize that this protein may have less avidity to RNA than it's L. major counterpart but still account for a significant functional activity in the parasite. The model obtained will help in the design of mutagenesis experiments aimed to elucidate the mechanism of gene expression in trypanosomatids and serve as a starting point for its exploration as a potential source of targets for a rational chemotherapy.
                                
Resumo:
Industrial applications demand that robots operate in agreement with the position and orientation of their end effector. It is necessary to solve the kinematics inverse problem. This allows the displacement of the joints of the manipulator to be determined, to accomplish a given objective. Complete studies of dynamical control of joint robotics are also necessary. Initially, this article focuses on the implementation of numerical algorithms for the solution of the kinematics inverse problem and the modeling and simulation of dynamic systems. This is done using real time implementation. The modeling and simulation of dynamic systems are performed emphasizing off-line programming. In sequence, a complete study of the control strategies is carried out through the study of several elements of a robotic joint, such as: DC motor, inertia, and gearbox. Finally a trajectory generator, used as input for a generic group of joints, is developed and a proposal of the controller's implementation of joints, using EPLD development system, is presented.
                                
Resumo:
The work reported in this paper is motivated by the need to investigate general methods for pattern transformation. A formal definition for pattern transformation is provided and four special cases namely, elementary and geometric transformation based on repositioning all and some agents in the pattern are introduced. The need for a mathematical tool and simulations for visualizing the behavior of a transformation method is highlighted. A mathematical method based on the Moebius transformation is proposed. The transformation method involves discretization of events for planning paths of individual robots in a pattern. Simulations on a particle physics simulator are used to validate the feasibility of the proposed method.
                                
Resumo:
The work reported in this paper is motivated by the need to investigate general methods for pattern transformation. A formal definition for pattern transformation is provided and four special cases namely, elementary and geometric transformation based on repositioning all and some agents in the pattern are introduced. The need for a mathematical tool and simulations for visualizing the behavior of a transformation method is highlighted. A mathematical method based on the Moebius transformation is proposed. The transformation method involves discretization of events for planning paths of individual robots in a pattern. Simulations on a particle physics simulator are used to validate the feasibility of the proposed method.
                                
Resumo:
We report in this work the study of the interaction between formic acid and an oxidized platinum surface under open circuit conditions. The investigation was carried out with the aid of in situ infrared spectroscopy, and results analyzed in terms of a mathematical model and numerical simulations. It has been found that during the first seconds of the interaction a small amount of CO(2) is produced and absolutely no adsorbed CO was observed. A sudden drop in potential then follows, which is accompanied by a steep increase first of CO(2) production and then by adsorbed CO. The steep transient was rationalized in terms of an autocatalytic production of free platinum sites which enhances the overall rate of reaction. Modeling and simulation showed nearly quantitative agreement with the experimental observations and provided further insight into some experimentally inaccessible variables such as surface free sites. Finally, based on the understanding provided from the combined experimental and theoretical approach, we discuss the general aspects influencing the open circuit transient.
                                
Resumo:
The multi-scale synoptic circulation system in the southeastern Brazil (SEBRA) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or ""features,"" are identified from previous observational studies. These features include the southward-flowing Brazil Current (BC), the eddies off Cabo Sao Tome (CST - 22 degrees S) and off Cabo Frio (CF - 23 degrees S), and the upwelling region off CF and CST. Their synoptic water-mass (T-S) structures are characterized and parameterized to develop temperature-salinity (T-S) feature models. Following [Gangopadhyay, A., Robinson, A.R., Haley, PJ., Leslie, W.J., Lozano, C.j., Bisagni, J., Yu, Z., 2003. Feature-oriented regional modeling and simulation (forms) in the gulf of maine and georges bank. Cont. Shelf Res. 23 (3-4), 317-353] methodology, a synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in this region is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and objectively analyzed with available background climatology in the deep region. These initialization fields are then used for dynamical simulations via the Princeton Ocean Model (POM). A few first applications of this methodology are presented in this paper. These include the BC meandering, the BC-eddy interaction and the meander-eddy-upwelling system (MEUS) simulations. Preliminary validation results include realistic wave-growth and eddy formation and sustained upwelling. Our future plan includes the application of these feature models with satellite, in-situ data and advanced data-assimilation schemes for nowcasting and forecasting the SEBRA region. (c) 2008 Elsevier Ltd. All rights reserved.
                                
Resumo:
Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. ^ There are two issues in using HLPNs—modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. ^ For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. ^ For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. ^ The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.^
                                
Resumo:
Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. There are two issues in using HLPNs - modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.
                                
Resumo:
Crop models are simplified mathematical representations of the interacting biological and environmental components of the dynamic soil–plant–environment system. Sorghum crop modeling has evolved in parallel with crop modeling capability in general, since its origins in the 1960s and 1970s. Here we briefly review the trajectory in sorghum crop modeling leading to the development of advanced models. We then (i) overview the structure and function of the sorghum model in the Agricultural Production System sIMulator (APSIM) to exemplify advanced modeling concepts that suit both agronomic and breeding applications, (ii) review an example of use of sorghum modeling in supporting agronomic management decisions, (iii) review an example of the use of sorghum modeling in plant breeding, and (iv) consider implications for future roles of sorghum crop modeling. Modeling and simulation provide an avenue to explore consequences of crop management decision options in situations confronted with risks associated with seasonal climate uncertainties. Here we consider the possibility of manipulating planting configuration and density in sorghum as a means to manipulate the productivity–risk trade-off. A simulation analysis of decision options is presented and avenues for its use with decision-makers discussed. Modeling and simulation also provide opportunities to improve breeding efficiency by either dissecting complex traits to more amenable targets for genetics and breeding, or by trait evaluation via phenotypic prediction in target production regions to help prioritize effort and assess breeding strategies. Here we consider studies on the stay-green trait in sorghum, which confers yield advantage in water-limited situations, to exemplify both aspects. The possible future roles of sorghum modeling in agronomy and breeding are discussed as are opportunities related to their synergistic interaction. The potential to add significant value to the revolution in plant breeding associated with genomic technologies is identified as the new modeling frontier.
Ab initio modeling and molecular dynamics simulation of the alpha 1b-adrenergic receptor activation.
                                
Resumo:
This work describes the ab initio procedure employed to build an activation model for the alpha 1b-adrenergic receptor (alpha 1b-AR). The first version of the model was progressively modified and complicated by means of a many-step iterative procedure characterized by the employment of experimental validations of the model in each upgrading step. A combined simulated (molecular dynamics) and experimental mutagenesis approach was used to determine the structural and dynamic features characterizing the inactive and active states of alpha 1b-AR. The latest version of the model has been successfully challenged with respect to its ability to interpret and predict the functional properties of a large number of mutants. The iterative approach employed to describe alpha 1b-AR activation in terms of molecular structure and dynamics allows further complications of the model to allow prediction and interpretation of an ever-increasing number of experimental data.
                                
Resumo:
Polycondensation of 2,6-dihydroxynaphthalene with 4,4'-bis(4"-fluorobenzoyl)biphenyl affords a novel, semicrystalline poly(ether ketone) with a melting point of 406 degreesC and glass transition temperature (onset) of 168 degreesC. Molecular modeling and diffraction-simulation studies of this polymer, coupled with data from the single-crystal structure of an oligomer model, have enabled the crystal and molecular structure of the polymer to be determined from X-ray powder data. This structure-the first for any naphthalene-containing poly(ether ketone)-is fully ordered, in monoclinic space group P2(1)/b, with two chains per unit cell. Rietveld refinement against the experimental powder data gave a final agreement factor (R-wp) of 6.7%.
                                
Resumo:
A new model proposed for the gasification of chars and carbons incorporates features of the turbostratic nanoscale structure that exists in such materials. The model also considers the effect of initial surface chemistry and different reactivities perpendicular to the edges and to the faces of the underlying crystallite planes comprising the turbostratic structure. It may be more realistic than earlier models based on pore or grain structure idealizations when the carbon contains large amounts of crystallite matter. Shrinkage of the carbon particles in the chemically controlled regime is also possible due to the random complete gasification of crystallitic planes. This mechanism can explain observations in the literature of particle size reduction. Based on the model predictions, both initial surface chemistry and the number of stacked planes in the crystallites strongly influence the reactivity and particle shrinkage. Its test results agree well with literature data on the air-oxidation of Spherocarb and show that it accurately predicts the variation of particle size with conversion. Model parameters are determined entirely from rate measurements.
                                
Resumo:
Receptor activity modifying proteins (RAMPs) are a family of single-pass transmembrane proteins that dimerize with G-protein-coupled receptors. They may alter the ligand recognition properties of the receptors (particularly for the calcitonin receptor-like receptor, CLR). Very little structural information is available about RAMPs. Here, an ab initio model has been generated for the extracellular domain of RAMP1. The disulfide bond arrangement (Cys 27-Cys82, Cys40-Cys72, and Cys 57-Cys104) was determined by site-directed mutagenesis. The secondary structure (a-helices from residues 29-51, 60-80, and 87-100) was established from a consensus of predictive routines. Using these constraints, an assemblage of 25,000 structures was constructed and these were ranked using an all-atom statistical potential. The best 1000 conformations were energy minimized. The lowest scoring model was refined by molecular dynamics simulation. To validate our strategy, the same methods were applied to three proteins of known structure; PDB:1HP8, PDB:1V54 chain H (residues 21-85), and PDB:1T0P. When compared to the crystal structures, the models had root mean-square deviations of 3.8 Å, 4.1 Å, and 4.0 Å, respectively. The model of RAMP1 suggested that Phe93, Tyr 100, and Phe101 form a binding interface for CLR, whereas Trp74 and Phe92 may interact with ligands that bind to the CLR/RAMP1 heterodimer. © 2006 by the Biophysical Society.
                                
Resumo:
The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the development of novel drugs against schistosomiasis, a neglected tropical disease that affects about 200 million people worldwide. In the present work, enzyme kinetic studies were carried out in order to determine the potency and mechanism of inhibition of a series of SmPNP inhibitors. In addition to the biochemical investigations, crystallographic and molecular modeling studies revealed important molecular features for binding affinity towards the target enzyme, leading to the development of structure-activity relationships (SAR).
 
                    