994 resultados para Molecular masses
Resumo:
Plodia interpunctella (Indian meal moth) is a cosmopolitan pest that attacks not only a wide range of stored grain as well other food products. Due to its economic importance several researches have focused in a method with ability to control this pest with few or no damage to the environment. The study of digestive enzymes inhibitors, lectins and chitin-binding proteins, has often been proposed as an alternative to reduce insect damage. In this study we report the major classes of digestive enzymes during larval growth in P. Interpunctella, being those proteinases actives at pH 9.5 and optimum temperature of 50 oC to both larvae of the 3rd instar and pre-pupal stage of development. In vitro and zymogram assays presented the effects of several inhibitors, such as SBTI, TLCK and PMSF to intestinal homogenate of 3rd instar larvae of 62%, 92% and 87% of inhibition and In pre-pupal stage of 87%, 62 % and 55% of inhibition, respectively. Zymograms showed inhibition of two low molecular masses protein bands by TLCK and that in presence of SBTI were retarded. These results are indicative of predominance of digestive serine proteinases in gut homogenate from Plodia interpunctella larvae. This serine proteinase was then used as a target to evaluate the effect of SBTI on larvae in in vivo assay. Effect of SBTI on mortality and larval mass was not observed at until 4% of concentration (w/w) in diets. Chitin, another target to insecticidal proteins, was observed by chemical method. Moreover, optic microscopy confirmed the presence of a peritrophic membrane. Established this target, in vivo effect of EvV, a chitin binding vicilin, evaluated during the larval development of P. interpunctella and was obtained a LD50 of 0,23% and WD50 of 0,27% to this protein. Mechanism of action was proposed through of the in vivo digestibility of EvV methodology. During the passage through the larval digestive tract was observed that EvV was susceptible to digestive enzymes and a reactive fragment, visualized by Western blotting, produced by digestion was recovered after dissociation of the peritrophic membrane. The bound of EvV to peritrophic membrane was confirmed by immunohystochemical assays that showed strong immunofluorescent signal of EvV-FITC binding and peritrophic membrane. These results are a indicative that vicilins could be utilized as potential insecticide to Plodia interpunctella and a control methods using EvV as bioinsecticide should be studied to reduce lost caused by storage insect pests
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present investigation was undertaken to identify and characterize trophozoite proteases of five axenic strains of Giardia duodenalis isolated in Brazil and the reference strain Portland 1 isolated in the United States. Trophozoite cell lysates of each strain were analysed for the pattern of proteins and for proteolytic activity. Samples were tested in SDS-polyacrylamide gel electrophoresis for the protein profiles, and the detection of proteases in cell lysates was performed using substrate gel electrophoresis [gelatin, collagen, bovine serum albumin (BSA) and haemoglobin] and azocasein assays. Indeed, synthetic inhibitors were included in the assays to characterize the protease classes. Differences on the hydrolysis patterns of protein substrates were observed in relation to the substrate composition as much as the Giardia trophozoite strain. The substrate-containing gels revealed hydrolysis bands with molecular masses ranging from > 97 to 20-15 kDa, and most zones were common to the five strains. However, some pronounced differences could be detected in the BTU-11 pattern. Azocasein was also degraded; however, depending on the lysate assayed, the degree of substrate degradation was variable. It was observed that inhibitory effects are substrate-dependent since the activity was predominantly due to cysteine proteases against gelatin, collagen, BSA and azocasein substrates and due to serine against haemoglobin. The presence of aspartic protease and aminopeptidase activity in the lysates was also indicated.
Characterization of the excretory/secretory products of Dermatobia hominis larvae, the human bot fly
Resumo:
Proteolytic activity in excretory/secretory products (ESP) of first- (L1), second- (L2) and third-instar (L3) larvae of Dermatobia hominis was analyzed through gelatin-gel and colorimetric enzyme assays with the chromogenic substrates azocasein and BApNA. The functional characterization of proteases was based on inhibition assays including synthetic inhibitors. ESP were obtained from new-hatched larvae reared in the laboratory and from second- and third-instar larvae removed from naturally infested cattle. Gelatin-gel analysis evidenced few bands of proteolysis, predominantly of high apparent molecular masses, in ESP of L1, whereas in the gel of L2 and U ESP there was a wide range of proteolytic activity most of them not resolved in a single species. Azocasein assays revealed a progressive increase of protease activity from first- to third-instar larvae. Protease inhibitor assays revealed a predominance of metalloproteases in L1 ESP that could be related to a skin penetration process and to a diversion of host immune response. The predominance of serine proteases in L2 and L3 and the great tryptic activity presented by L3 ESP were attributed to an increasing trophic activity by the growing larvae, since the viability of adult flies strictly depends on larval abilities to assimilate nutrients from the host. Taking together, these results suggest that Dematobia larvae secrete/excrete different proteases that may be related to diverse functions during host penetration and infestation, which reinforces the relevance of the study of such proteolytic enzymes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The alkalophilic bacteria Bacillus licheniformis 77-2 produces significant quantities of thermostable cellulase-free xylanases. The crude xylanase was purified to apparent homogeneity by gel filtration (G-75) and ionic exchange chromatography (carboxymethyl sephadex, Q sepharose, and Mono Q), resulting in the isolation of two xylanases. The molecular masses of the enzymes were estimated to be 17 kDa (X-I) and 40 kDa (X-II), as determined by SDS-PAGE. The K(m) and V(max) values were 1.8 mg/mL and 7.05 U/mg protein (X-I), and 1.05 mg/mL and 9.1 U/mg protein (X-II). The xylanases demonstrated optimum activity at pH 7.0 and 8.0-10.0 for xylanase X-I and X-II, respectively, and, retained more than 75% of hydrolytic activity up to pH 11.0. The purified enzymes were most active at 70 and 75 degrees C for X-I and X-II, respectively, and, retained more than 90% of hydrolytic activity after 1 h of heating at 50 degrees C and 60 degrees C for X-I and X-II, respectively. The predominant products of xylan hydrolysates indicated that these enzymes were endoxylanases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Bucain is a three-finger toxin, structurally homologous to snake-venom muscarinic toxins, from the venom of the Malayan krait Bungarus candidus. These proteins have molecular masses of approximately 6000-8000 da and encompass the potent curaremimetic neurotoxins which confer lethality to Elapidae and Hydrophidae venoms. Bucain was crystallized in two crystal forms by the hanging-drop vapour-diffusion technique in 0.1 M sodium citrate pH 5.6, 15% PEG 4000 and 0.15 M ammonium acetate. Form I crystals belong to the monoclinic system space group C2, with unit-cell parameters a = 93.73, b = 49.02, c = 74.09 Angstrom, beta = 111.32degrees, and diffract to a nominal resolution of 1.61 Angstrom. Form II crystals also belong to the space group C2, with unit-cell parameters a = 165.04, b = 49.44, c = 127.60 Angstrom, beta = 125.55degrees, and diffract to a nominal resolution of 2.78 Angstrom. The self-rotation function indicates the presence of four and eight molecules in the crystallographic asymmetric unit of the form I and form II crystals, respectively. Attempts to solve these structures by molecular-replacement methods have not been successful and a heavy-atom derivative search has been initiated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An extracellular (conidial) and an intracellular (mycelial) alkaline phosphatase from the thermophilic fungus Scytalidium thermophilum were purified by DEAE-cellulose and Concanavalin A-Sepharose chromatography. These enzymes showed allosteric behavior either in the presence or absence of MgCl2, BaCl2, CuCl2, and ZnCl2. All of these ions increased the maximal velocity of both enzymes. The molecular masses of the conidial and mycelial enzymes, estimated by gel filtration, were 162 and 132 kDa, respectively. Both proteins migrated on SDS-PAGE as a single polypeptide of 63 and 58.5 kDa, respectively, suggesting that these enzymes were dimers of identical subunits. The best substrate for the conidial and mycelial phosphatases was p-nitrophenylphosphate, but,beta -glycerophosphate and other phosphorylated compounds also served as substrates. The optimum pH for the conidial and mycelial alkaline phosphatases was 10.0 and 9.5 in the presence of AMPOL buffer, and their carbohydrate contents were about 54% and 63%, respectively. The optimum temperature was 70-75 degreesC for both activities. The enzymes were fully stable up to 1 h at 60 degreesC. These and other properties suggested that the alkaline phosphatases of S. thermophilum might be suitable for biotechnological applications.
Resumo:
The enzyme pectinmethylesterase (PME) from acerola was extracted and purified by gel anion-exchange chromatography (Q Sepharose) and filtration on Sephadex G-100. The results showed two different PME isoforms (PME1 and PME2), with molecular masses of 25.10 and 5.20 kDa, respectively. PMEI specific activity increased by 9.63% after 60 min incubation at 98 degrees C, while PME2 retained 66% of its specific activity under the same conditions. The K-m values of PMEI, PME2 and concentrated PME were 0.94, 0.08 and 0.08mg mL(-1), respectively. The V-max value of PMEI, PME2 and concentrated were 204.08, 2, 158.73 and 2.92 mu mol min(-1) mg(-1) protein, respectively. (c) 2007 Society of Chemical Industry.
Resumo:
Acidic phospholipase A(2) (PLA(2)) isoforms in snake venoms, particularly those from Bothrops jararacussu, have not been characterized. This article reports the isolation and partial biochemical, functional and structural characterization of four acidic PLA(2)s (designated SIIISPIIA, SIIISPIIB, SIIISPIIIA and SIIISPIIIB) from this venom. The single chain purified proteins contained 122 amino acid residues and seven disulfide bonds with approximate molecular masses of 15 kDa and isoelectric points of 5.3. The respective N-terminal sequences were: SIIISPIIA-SLWQFGKMIDYVMGEEGAKS; SIIISPIIB-SLWQFGKMIFYTGKNEPVLS; SIIISPIIIA-SLWQFGKMILYVMGGEGVKQ and SIIISPIIIB-SLWQFGKMIFYEMTGEGVL. Crystals of the acidic protein SIIISPIIIB diffracted beyond 1.8 Angstrom resolution. These crystals are monoclinic with unit cell dimensions of a = 40.1 Angstrom, b = 54.2 Angstrom and c = 90.7 Angstrom. The crystal structure has been refined to a crystallographic residual of 16.1% (R-free = 22.9%). Specific catalytic activity (U/mg) of the isolated acidic PLA(2)s were SIIISPIIA = 290.3 U/mg; SIIISPIIB = 279.0 U/mg; SIIISPIIIA = 270.7 U/mg and SIIISPIIIB = 96.5 U/mg. Although their myotoxic activity was low, SIIISPIIA, SIIISPIIIB and SIIISPIIIA showed significant anticoagulant activity. However, there was no indirect hemolytic activity. SIIISPIIIB revealed no anticoagulant, but presented indirect hemolytic activity. With the exception of SIIISPIIIB, which inhibited platelet aggregation, all the others were capable of inducing time-independent edema. Chemical modification with 4-bromophenacyl bromide did not inhibit the induction of edema, but did suppress other activities. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
Two extracellular xylanases produced by the thermotolerant fungus Aspergillus caespitosus grown in sugar cane bagasse were purified and characterized. Estimated molecular masses were 26.3 and 27 kDa (xyl I); 7.7 and 17.7 kDa (xyl II) for gel filtration and SDS-PAGE, respectively. Optimal temperature for both xylanases was 50-55°C. Optimal pH was 6.5-7.0 for xyl I, and 5.5-6.5 for xyl II. The thermostability (T half) at 55°C was 27.3 min (xyl I) and >90 min (xyl II). Xylanase activity was inhibited by several ions. β-mercaptoethanol activated 59 and 102% xyl I and xyl II activities, respectively. These enzymes preferentially hydrolyzed birchwood xylan, and the K m and V max values were 2.5 mg/ml and 1679 U/mg protein (xyl I), and 3.9 mg/ml and 113 U/mg protein (xyl II). The action of both xylanases mainly that of xyl II, on kraft pulp reduced kappa number and increased pulp viscosity. © 2004 Elsevier Ltd. All rights reserved.