1000 resultados para Molecular Biophysics Unit
Resumo:
Conformational studies have been carried out on the X-cis-Pro tripeptide system (a system of three linked peptide units, in the trans-cis-trans configuration) using energy minimization techniques. For X, residues Gly, L-Ala, D-Ala and L-Pro have been used. The energy minima have been classified into different groups based upon the conformational similarity. There are 15, 20, 18 and 6 minima that are possible for the four cases respectively and these fall into 11 different groups. A study of these minima shows that, (i) some minima contain hydrogen bonds - either 4-->1 or 1-->2 type, (ii) the low energy minima qualify themselves as bend conformations, (iii) cis' and trans' conformations are possible for the prolyl residue as also the C(gamma)-endo and C(gamma)-exo puckerings, and (iv) for Pro-cis-Pro, cis' at the first prolyl residue is ruled out, due to the high energy. The available crystal structure data on proteins and peptides, containing cis-Pro segment have been examined with a view to find the minima that occur in solid state. The data from protein show that they fall under two groups. The conformation at X in X-cis-Pro is near extended when it is a non-glycyl residue. In both peptides and proteins there exists a preference for trans' conformation at prolyl residue over cis' when X is a non-glycyl residue. The minima obtained can be useful in modelling studies.
Resumo:
Molecular dynamics (MD) studies have been carried out on the Hoogsteen hydrogen bonded parallel and the reverse Hoogsteen hydrogen banded antiparallel C.G*G triplexes. Earlier, the molecular mechanics studies had shown that the parallel structure was energetically more favourable than the antiparallel structure. To characterize the structural stability of the two triplexes and to investigate whether the antiparallel structure can transit to an energetically more favourable structure, due to the local fluctuations in the structure during the MD simulation, the two structures were subjected to 200ps of constant temperature vacuum MD simulations at 300K. Initially no constraints were applied to the structures and it was observed that for the antiparallel tripler, the structure showed a large root mean square deviation from the starting structure within the first 12ps and the N4-H41-O6 hydrogen bond in the WC duplex got distorted due to a high propeller twist and a moderate increase in the opening angle in the basepairs. Starting from an initial value of 30 degrees, helical twist of the average structure from this simulation had a value of 36 degrees, while the parallel structure stabilized at a twist of 33 degrees. In spite of the hydrogen bond distortions in the antiparallel tripler, it was energetically comparable to the parallel tripler. To examine the structural characteristics of an undistorted structure, another MD simulation was performed on the antiparallel tripler by constraining all the hydrogen bonds. This structure stabilized at an average twist of 33 degrees. In the course of the dynamics though the energy of the molecule - compared to the initial structure - improved, it did not become comparable to the parallel structure. Energy minimization studies performed in the presence of explicit water and counterions also showed the two structures to be equally favourable energetically Together these results indicate that the parallel C.G*G tripler with Hoogsteen hydrogen bonds also represents a stereochemically and energetically favourable structure for this class of triplexes.
Resumo:
Recent experimental studies have shown that the Rec-A mediated homologous recombination reaction involves a triple helical intermediate, in which the third strand base forms hydrogen bonds with both the bases in the major groove of the Watson-Crick duplex. Such 'mixed' hydrogen bonds allow formation of sequence independent triplexes. DNA triple helices involving 'mixed' hydrogen bonds have been studied, using model building, molecular mechanics (MM) and molecular dynamics (MD). Models were built for a tripler comprising all four possible triplets viz., G.C*C, C.G*G, A.T*T and T.A*A. To check the stability of all the 'mixed' hydrogen bonds in such triplexes and the conformational preferences of such tripler structures, MD studies were carried out starting from two structures with 30 degrees and 36 degrees twist between the basepairs. It was observed that though the two triplexes converged towards a similar structure, the various hydrogen bonds between the WC duplex and the third strand showed differential stabilities. An MD simulation with restrained hydrogen bonds showed that the resulting structure was stable and remained close to the starting structure. These studies help us in defining stable hydrogen bond geometries involving the third strand and the WC duplex. It was observed that in the C.G*G triplets the N7 atom of the second strand is always involved in hydrogen bonding. In the G.C*C triplets, either N3 or O2 in the third strand cytosine can interchangeably act as a hydrogen bond acceptor.
Resumo:
DNA triple helices containing two purine strands and one pyrimidine strand (C.G*G and T.A*A) have been studied, using model building followed by energy minimisation, for different orientations of the third strand resulting from variation in the hydrogen bonding between the Watson-Crick duplex and the third strand and the glycosidic torsion angle in the third strand. Our results show that in the C.G*G case the structure with a parallel orientation of the third strand, resulting from Hoogsteen hydrogen bonds between the third strand and the Watson-Crick duplex, is energetically the most favourable while in the T.A*A case the antiparallel orientation of the third strand, resulting from reverse Hoogsteen hydrogen bonds, is energetically the most favourable. These studies when extended to the mixed sequence triplexes, in which the second strand is a mixture of G and A, correspondingly the third strand is a mixture of G and APT, show that though the parallel orientation is still energetically more favourable, the antiparallel orientation becomes energetically comparable with an increasing number of thymines in the third strand. Structurally, for the mixed triplexes containing G and T in the third strand, it is seen that the basepair non-isomorphism between the C.G*G and the T.A*T triplets can be overcome with some changes in the base pair parameters without much distortion of either the backbone or the hydrogen bonds.
Resumo:
Molecular dynamics simulation studies on polyene antifungal antibiotic amphotericin B, its head-to-tail dimeric structure and lipid - amphotericin B complex demonstrate interesting features of the flexibilities within the molecule and define the optimal interactions for the formation of a stable dimeric structure and complex with phospholipid.
Resumo:
Inovirus is a helical array of alpha-helical protein asymmetric units surrounding a DNA core. X-ray fibre diffraction studies show that the Pf1 species of Inovirus can undergo a reversible temperature-induced transition between two similar structural forms having slightly different virion helix parameters. Molecular models of the two forms show no evidence for altered interactions between the protein and either the solvent or the viral DNA; but there are significant differences in the shape and orientation of the protein asymmetric unit, related to the changes in the virion parameters. Normal modes involving libration of whole asymmetric units are in a frequency range with appreciable entropy of libration, and the structural transition may be related to changes in libration.
Resumo:
Beta-Lactamase, which catalyzes beta-lactam antibiotics, is prototypical of large alpha/beta proteins with a scaffolding formed by strong noncovalent interactions. Experimentally, the enzyme is well characterized, and intermediates that are slightly less compact and having nearly the same content of secondary structure have been identified in the folding pathway. In the present study, high temperature molecular dynamics simulations have been carried out on the native enzyme in solution. Analysis of these results in terms of root mean square fluctuations in cartesian and [phi, psi] space, backbone dihedral angles and secondary structural hydrogen bonds forms the basis for an investigation of the topology of partially unfolded states of beta-lactamase. A differential stability has been observed for alpha-helices and beta-sheets upon thermal denaturation to putative unfolding intermediates. These observations contribute to an understanding of the folding/unfolding processes of beta-lactamases in particular, and other alpha/beta proteins in general.
Resumo:
Proline plays an important role in the secondary structure of proteins. In the pursuit of understanding its structural role, Proline containing helices with constraints have been studied by employing molecular dynamics (MD) technique. In the present study, the constraint introduced is a threonine residue, whose sidechain has intramolecular hydrogen bond interaction with the backbone oxygen atom. The three systems that have been chosen for characterization are: (1) Ace-(Ala)12−Thr-Pro-(Ala)10−NHMe, (2) Ace-(Ala)13-Pro-Ala-Thr- (Ala)8-NHMe and (3) Ace-(Ala)13-Pro-(Ala)3-Thr-(Ala)6-NHMe. The equilibrium structures and structural transitions have been identified by monitoring the backbone dihedral angles, bend related parameters and the hydrogen bond interactions. The MD averages and root mean square (r.m.s.) fluctuations are compared and discussed. Energy minimization has been carried out on selected MD simulated points in order to analyze the characteristics of different conformations.
Resumo:
Inovirus is a helical array of agr-helical protein asymmetric units surrounding a DNA core. X-ray fibre diffraction studies show that the Pf1 species of Inovirus can undergo a reversible temperature-induced transition between two similar structural forms having slightly different virion helix parameters. Molecular models of the two forms show no evidence for altered interactions between the protein and either the solvent or the viral DNA; but there are significant differences in the shape and orientation of the protein asymmetric unit, related to the changes in the virion parameters. Normal modes involving libration of whole asymmetric units are in a frequency range with appreciable entropy of libration, and the structural transition may be related to changes in libration.
Resumo:
Molecular Dynamics (MD) simulations provide an atomic level account of the molecular motions and have proven to be immensely useful in the investigation of the dynamical structure of proteins. Once an MD trajectory is obtained, specific interactions at the molecular level can be directly studied by setting up appropriate combinations of distance and angle monitors. However, if a study of the dynamical behavior of secondary structures in proteins becomes important, this approach can become unwieldy. We present herein a method to study the dynamical stability of secondary structures in proteins, based on a relatively simple analysis of backbone hydrogen bonds. The method was developed for studying the thermal unfolding of beta-lactamases, but can be extended to other systems and adapted to study relevant properties.
Resumo:
Molecular constraints for the localization of active site directed ligands (competitive inhibitors and substrates) in the active site of phospholipase A2 (PLA2) are characterized. Structure activity relationships with known inhibitors suggest that the head : group interactions dominate the selectivity as well as a substantial part of the affinity. The ab initio fitting of the amide ligands in the active site was carried out to characterize the head group interactions. Based on a systematic coordinate space search, formamide is docked with known experimental constraints such as coordination of the carbonyl group to Ca2+ and hydrogen bond between amide nitrogen and ND1 of His48. An optimal position for a bound water molecule is identified and its significance for the catalytic mechanism is postulated. Unlike the traditional ''pseudo-triad'' mechanism, the ''Ca-coordinatedoxyanion'' mechanism proposed here invokes activation of the catalytic water to form the oxyanion in the coordination sphere of calcium. As it attacks the carbonyl carbon of the ester, a near-tetrahedral intermediate is formed. As the second proton of the catalytic water is abstracted by the ester oxygen, its reorientation and simultaneous cleavage form hydrogen bond with ND1 of His48. In this mechanism of esterolysis, a catalytic role for the water co-ordinated to Ca2+ is recognised.
Resumo:
The circular dichroism, fluorescence, Nuclear Magnetic Resonance and BLM conductance studies indicate that A23187 forms a stable complex with amino acids at low ionophore concentrations (<10(-4)M). However, A23187 prefers to be in a dimeric structure with no significant binding to amino acids, at concentrations higher than 10(-4)M. It was also observed that at lower concentrations, at which the amino acids bind to the ionophore, the affinity for calcium ions was several orders of magnitude lower than that at higher ionophore concentrations. We have also conducted molecular modeling studies to examine the structure of the A23187 dimer and its amino acid complexes. The results of these modeling studies strongly support our experimental results and validate the formation of a hydrogen bonded and energetically stable A23187 dimer and its amino acid complexes.
Resumo:
Molecular self-assembly is of key importance for the rational design of advanced materials. To investigate the causal relation between molecular structure and the consequent self-assembled microstructure, self-assembled tubules of diacetylenic lipids were studied. Circular-dichroism studies give experimental evidence that the formation of tubules is driven by chiral molecular packing, in agreement with recent theories of tubules. On the basis of these results, a molecular mechanism for the formation of tubules is proposed.
Resumo:
Proline residues in helices play an important role in the structure of proteins. The proline residue introduces a kink in the helix which varies from about 5-degrees to 50-degrees. The presence of other residues such as threonine or valine near the proline region can influence the flexibility exhibited by the kinked helix, which can have an important biological role. In the present paper, the constraint introduced by threonine and valine on a proline helix is investigated by molecular dynamics studies. The systems considered am (1) a poly-alanine helix with threonine-proline residues (TP) and (2) a poly-alanine helix with valine-threonine-proline residues (VTP), in the middle. Molecular dynamics simulations are carried out on these two systems for 500 ps. The results are analyzed in terms of structural transitions, bend-related parameters and sidechain orientations.