1000 resultados para Modelos multivariados de retornos


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Utilizando dados financeiros brasileiros da BM&F, testa-se a validade do modelo de valor presente na estrutura a termo de juros, também conhecido na literatura como Hipótese das Expectativas. Estes modelos relacionam a taxa de juros de longo prazo à uma média das taxas de juros de curto-prazo mais um prêmio de risco, invariante no tempo. Associada a estes modelos está a questão da previsibilidade dos retornos de ativos financeiros ou, mais especificamente, à previsibilidade na evolução das taxas de juros. Neste artigo é realizada uma análise multivariada num arcabouço de séries temporais utilizando a técnica de Auto-Regressão Vetorial. Os resultados empíricos aceitam apenas parcialmente a Hipótese das Expectativas para a estrutura a termo de juros brasileira.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nas últimas décadas, a análise dos padrões de propagação internacional de eventos financeiros se tornou o tema de grande parte dos estudos acadêmicos focados em modelos de volatilidade multivariados. Diante deste contexto, objetivo central do presente estudo é avaliar o fenômeno de contágio financeiro entre retornos de índices de Bolsas de Valores de diferentes países a partir de uma abordagem econométrica, apresentada originalmente em Pelletier (2006), sobre a denominação de Regime Switching Dynamic Correlation (RSDC). Tal metodologia envolve a combinação do Modelo de Correlação Condicional Constante (CCC) proposto por Bollerslev (1990) com o Modelo de Mudança de Regime de Markov sugerido por Hamilton e Susmel (1994). Foi feita uma modificação no modelo original RSDC, a introdução do modelo GJR-GARCH formulado em Glosten, Jagannathan e Runkle (1993), na equação das variâncias condicionais individuais das séries para permitir capturar os efeitos assimétricos na volatilidade. A base de dados foi construída com as séries diárias de fechamento dos índices das Bolsas de Valores dos Estados Unidos (SP500), Reino Unido (FTSE100), Brasil (IBOVESPA) e Coréia do Sul (KOSPI) para o período de 02/01/2003 até 20/09/2012. Ao longo do trabalho a metodologia utilizada foi confrontada com outras mais difundidos na literatura, e o modelo RSDC com dois regimes foi definido como o mais apropriado para a amostra selecionada. O conjunto de resultados encontrados fornecem evidências a favor da existência de contágio financeiro entre os mercados dos quatro países considerando a definição de contágio financeiro do Banco Mundial denominada de “muito restritiva”. Tal conclusão deve ser avaliada com cautela considerando a extensa diversidade de definições de contágio existentes na literatura.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O trabalho testa o poder de previsão da volatilidade futura, de cinco modelos : um modelo ingênuo, do tipo martingale, o modelo sugerido pelo JPMorgan em seu RiskMetrics™, o modelo GARCH-Generalized Autoregressive Conditional Heteroscedasticity, o modelo da volatilidade implícita e combinações de Risk:MetricsTM com volatilidade implícita e de GARCH com volatilidade implícita. A série estudada é a volatilidade para vinte e cinco dias, dos retornos diários do contrato futuro de Ibovespa, negociado na BM&F - Bolsa de Mercadorias e Futuros. Particularidades brasileiras são introduzidas na. estimação dos parâmetros do modelo GARCH. O poder de previsão é testado com medidas estatísticas, envolvendo equações de perdas (loss functions) simétricas e assimétricas, e com uma medida econômica, dada pelo lucro obtido a partir da simulação da realização de operações hedgeadas, sugeridas pelas previsões de volatilidade. Tanto com base nas medidas estatísticas como na medida econômica, o modelo GARCH emerge como o de melhor desempenho. Com base nas medidas estatísticas, esse modelo é particularmente melhor em período de mais alta volatilidade. Com base na medida econômica, contudo, o lucro obtido não é estatisticamente diferente de zero, indicando eficiência do mercado de opções de compra do contrato futuro de Ibovespa, negociado na mesmaBM&F.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mandelbrot (1971) demonstrou a importância de considerar dependências de longo prazo na precificação de ativos - o método tradicional para mensurá-las, encontrado em Hurst (1951), faz uso da estatística R/S. Paralelamente a isso, Box e Jenkins (1976; edição original de 1970) apresentaram sua famosa metodologia para determinação da ordem dos parâmetros de modelos desenvolvidos no contexto de processos com memória de curto prazo, conhecidos por ARIMA (acrônimo do inglês Autoregressive Integrated Moving Average). Estimulados pela percepção de que um modelo que pretenda representar fielmente o processo gerador de dados deva explicar tanto a dinâmica de curto prazo quanto a de longo prazo, Granger e Joyeux (1980) e Hosking (1981) introduziram os modelos ARFIMA (de onde o F adicionado vem de Fractionally), uma generalização da classe ARIMA, nos quais a dependência de longo prazo estimada é relacionada ao valor do parâmetro de integração. Pode-se dizer que a partir de então processos com alto grau de persistência passaram a atrair cada vez mais o interesse de pesquisadores, o que resultou no desenvolvimento de outros métodos para estimá-la, porém sem que algum tenha se sobressaído claramente – e é neste ponto que o presente trabalho se insere. Por meio de simulações, buscou-se: (1) classificar diversos estimadores quanto a sua precisão, o que nos obrigou a; (2) determinar parametrizações razoáveis desses, entendidas aqui como aquelas que minimizam o viés, o erro quadrático médio e o desvio-padrão. Após rever a literatura sobre o tema, abordar estes pontos se mostrou necessário para o objetivo principal: elaborar estratégias de negociação baseadas em projeções feitas a partir da caracterização de dependências em dados intradiários, minuto a minuto, de ações e índices de ações. Foram analisadas as séries de retornos da ação Petrobras PN e do Índice Bovespa, com dados de 01/04/2013 a 31/03/2014. Os softwares usados foram o S-Plus e o R.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Com o objetivo de mostrar uma aplicação dos modelos da família GARCH a taxas de câmbio, foram utilizadas técnicas estatísticas englobando análise multivariada de componentes principais e análise de séries temporais com modelagem de média e variância (volatilidade), primeiro e segundo momentos respectivamente. A utilização de análise de componentes principais auxilia na redução da dimensão dos dados levando a estimação de um menor número de modelos, sem contudo perder informação do conjunto original desses dados. Já o uso dos modelos GARCH justifica-se pela presença de heterocedasticidade na variância dos retornos das séries de taxas de câmbio. Com base nos modelos estimados foram simuladas novas séries diárias, via método de Monte Carlo (MC), as quais serviram de base para a estimativa de intervalos de confiança para cenários futuros de taxas de câmbio. Para a aplicação proposta foram selecionadas taxas de câmbio com maior market share de acordo com estudo do BIS, divulgado a cada três anos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uma das principais características dos ativos financeiros é a mudança de regime. Os preços dos ativos apresentam pouca variabilidade nos períodos de normalidade e possuem quedas inesperadas e são instáveis nos períodos de crise. Esta tese estuda alocação de portfólio com mudança de regime. O primeiro ensaio considera a decisão ótima de investimento entre os ativos de risco quando o mercado financeiro possui mudança de regime, definindo portfólios ótimos que dependem dos retornos esperados, risco e das crenças sobre o estado do mercado financeiro. O segundo ensaio estuda alocação de portfólio baseada em estimativas do modelo fatorial com mudança de regime e compara com alocações usando modelos fatoriais lineares e momentos amostrais. A mudança de regime tem maior efeito sobre o processo de escolha dos portfólios do que sobre as estimativas usadas para definir as carteiras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimar e prever a volatilidade de um ativo é uma tarefa muito importante em mercados financeiros. Nosso objetivo neste trabalho é propor o conceito de deformação temporal neste contexto. A idéia é que o mercado modifica-se com a chegada de novas informações, e não com o decorrer do tempo de calendário. Nós estimamos a volatilidade dos retornos do IBOVESPA, aplicando Modelos de Volatilidade Estocástica sem e com Deformação Temporal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A presente dissertação tem como objetivo apresentar dois importantes modelos usados na análise de risco. Essa análise culmina em uma aplicação empírica para cada um deles. Apresenta-se primeiro o modelo Nelson-Siegel dinâmico, que estima a curva de juros usando um modelo paramétrico exponencial parcimonioso. É citada a referência criadora dessa abordagem, que é Nelson & Siegel (1987), passa-se pela apresentação da mais importante abordagem moderna que é a de Diebold & Li (2006), que é quem cria a abordagem dinâmica do modelo Nelson-Siegel, e que é inspiradora de diversas extensões. Muitas dessas extensões também são apresentadas aqui. Na parte empírica, usando dados da taxa a termo americana de Janeiro de 2004 a Março de 2015, estimam-se os modelos Nelson-Siegel dinâmico e de Svensson e comparam-se os resultados numa janela móvel de 12 meses e comparamos seus desempenhos com aqueles de um passeio aleatório. Em seguida, são apresentados os modelos ARCH e GARCH, citando as obras originais de Engle (1982) e Bolleslev (1986) respectivamente, discutem-se características destes modelos e apresentam-se algumas extensões ao modelo GARCH, incluindo aí alguns modelos GARCH multivariados. Passa-se então por uma rápida apresentação do conceito de VaR (Value at Risk), que será o objetivo da parte empírica. Nesta, usando dados de 02 de Janeiro de 2004 até 25 de Fevereiro de 2015, são feitas uma estimação da variância de um portfólio usando os modelos GARCH, GJR-GARCH e EGARCH e uma previsão do VaR do portfólio a partir da estimação feita anteriormente. Por fim, são apresentados alguns trabalhos que usam os dois modelos conjuntamente, ou seja, que consideram que as taxas ou os fatores que as podem explicam possuem variância variante no tempo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho, propomos uma especificação de modelo econométrico na forma reduzida, estimado por mínimos quadrados ordinários (MQO) e baseado em variáveis macroeconômicas, com o objetivo de explicar os retornos trimestrais do índice de ações IBRX-100, entre 2001 e 2015. Testamos ainda a eficiência preditiva do modelo e concluímos que o erro de previsão estimado em janela móvel, com re-estimação de MQO a cada rodada, e utilização de VAR auxiliar para projeção dos regressores, é significativamente inferior ao erro de previsão associado à hipótese de Random Walk para o horizonte de previsão de um trimestre a frente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O estudo teve como objetivo avaliar a capacidade preditiva dos modelos de estimação do risco de mercado em momentos de crises financeiras. Para isso, foram testados modelos de estimação do Value-at-Risk (VaR) aplicados aos retornos diários de carteiras compostas por índices de ações de países desenvolvidos e emergentes. Foram testados o modelo VaR de Simulação Histórica, modelos ARCH multivariados (Bekk, Vech e CCC), Redes Neurais Artificiais e funções Cópulas. A amostra de dados refere-se aos períodos de duas crises financeiras internacionais, Crise Asiática, de 1997, e Crise do Sub Prime dos EUA, de 2008. Os resultados apontaram que os modelos ARCH multivariados (Vech e Bekk) e Cópula - Clayton tiveram desempenho semelhantes, com bons ajustes em 100% dos testes. Diferentemente do que era esperado, não foi possível perceber diferenças significativas entre os ajustes para países desenvolvidos e emergentes e os momentos de crise e normal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho, foi realizado um estudo de mapeamento de áreas de incidência e previsões para os casos de dengue na área urbana de Belém. Para as previsões foi utilizada à incidência de dengue com a precipitação pluviométrica a partir de modelos estatísticos, baseados na metodologia de Box e Jenkins de series temporais. O período do estudo foi de 05 anos (2007-2011). Na pesquisa temos métodos multivariados de series temporais, com uso de função de transferência e modelos espaciais, em que se analisou a existência de autocorrelações espaciais na variável em estudo. Os resultados das análises dos dados de incidência de casos de dengue e precipitação mostraram que, o aumento no número de casos de dengue acompanha o aumento na precipitação, demonstrando a relação direta entre o número de casos de dengue e a precipitação nos anos em estudo. O modelo de previsão construído para a incidência de casos de dengue apresentou um bom ajuste com resultados satisfatórios podendo, neste caso, ser utilizado na previsão da dengue. Em relação à análise espacial, foi possível uma visualização da incidência de casos na área urbana de Belém, com as respectivas áreas de incidência, mostrando os níveis de significância em porcentagem. Para o período estudado observou-se o comportamento e as variações dos casos de dengue, com destaque para quatro bairros: Marco, Guamá, Pedreira e Tapanã, com possíveis influências destes bairros nas áreas (bairros) vizinhas. Portanto, o presente estudo evidencia a contribuição para o planejamento das ações de controle da dengue, ao servir de instrumento no apoio às decisões na área de saúde pública.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work outlines the historic development of the concept and main theories of energy transfer, as well as the principal experiments carried out to confirm or refute the proposed theories. Energy transfer in coordination compounds is also discussed with a focus on rare earth systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research approaches recycling of urban waste compost (UWC) as an alternative fertilizer for sugarcane crop and as a social and environmental solution to the solids residuals growth in urban centers. A mathematical model was used in order to know the metal dynamics as decision support tool, aiming to establish of criteria and procedures for UWC's safe use, limited by the amount of heavy metal. A compartmental model was developed from experimental data in controlled conditions and partially checked with field data. This model described the heavy metal transference in the system soil-root-aerial portion of sugarcane plants and concluded that nickel was metal to be concern, since it takes approximately three years to be attenuated in the soil, reaching the aerial portions of the plant at high concentrations. Regarding factors such as clay content, oxide level and soil pH, it was observed that for soil with higher buffering capacity, the transfer of the majority of the metals was slower. This model may become an important tool for the attainment of laws regarding the UWC use, aiming to reduce environment contamination the waste accumulation and production costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of female broiler breeders is of great importance for the country as poultry production is one of the largest export items, and Brazil is the second largest broiler meat exporter. Animal behavior is known as a response to the effect of several interaction factors among them the environment. In this way the internal housing environment is an element that gives hints regarding to the bird s thermal comfort. Female broiler breeder behavior, expresses in form of specific pattern the bird s health and welfare. This research had the objective of applying predictive statistical models through the use of simulation, presenting animal comfort scenarios facing distinct environmental conditions. The research was developed with data collected in a controlled environment using Hybro - PG® breeding submitted to distinct levels of temperature, three distinct types of standard ration and age. Descriptive and exploratory analysis were proceeded, and afterwards the modeling process using the Generalized Estimation Equation (GEE). The research allowed the development of the thermal comfort indicators by statistical model equations of predicting female broiler breeder behavior under distinct studied scenarios.