992 resultados para Modelos de Euler-Bernoulli
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
The shape modes of a damped-free beam model with a tip rotor are determined by using a dynamical basis that is generated by a fundamental spatial free response. This is a non-classical distributed model for the displacements in the transverse directions of the beam which turns out to be coupled through boundary conditions due to rotation. Numerical calculations are performed by using the Ritz-Rayleigh method with several approximating basis.
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical rotor with a hard disk at the edge through the classical and complex modal analysis. The mathematical modeling was based on the theory of Euler-Bernoulli beam. The equation that rules the movement was obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element method was used to discretize the structure into hollow cylindrical elements with 12 degrees of freedom. Mass, stiffness and gyroscopic matrices were explained consistently. This type of tool, based on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is not deformed. A finite element program was developed using Matlab ®, and numerical simulations were performed to validate this model.
Resumo:
A transmission problem involving two Euler-Bernoulli equations modeling the vibrations of a composite beam is studied. Assuming that the beam is clamped at one extremity, and resting on an elastic bearing at the other extremity, the existence of a unique global solution and decay rates of the energy are obtained by adding just one damping device at the end containing the bearing mechanism.
Resumo:
[EN]A boundary element-finite element model is presented for the three-dimensional dynamic analysis of piled buildings in the frequency domain. Piles are modelled as compressible Euler-Bernoulli beams founded on a linear, isotropic, viscoelastic, zoned-homogeneous, unbounded layered soil, while multi-storey buildings are assumed to be comprised of vertical compressible piers and rigid slabs.
Resumo:
By using a symbolic method, known in the literature as the classical umbral calculus, a symbolic representation of Lévy processes is given and a new family of time-space harmonic polynomials with respect to such processes, which includes and generalizes the exponential complete Bell polynomials, is introduced. The usefulness of time-space harmonic polynomials with respect to Lévy processes is that it is a martingale the stochastic process obtained by replacing the indeterminate x of the polynomials with a Lévy process, whereas the Lévy process does not necessarily have this property. Therefore to find such polynomials could be particularly meaningful for applications. This new family includes Hermite polynomials, time-space harmonic with respect to Brownian motion, Poisson-Charlier polynomials with respect to Poisson processes, Laguerre and actuarial polynomials with respect to Gamma processes , Meixner polynomials of the first kind with respect to Pascal processes, Euler, Bernoulli, Krawtchuk, and pseudo-Narumi polynomials with respect to suitable random walks. The role played by cumulants is stressed and brought to the light, either in the symbolic representation of Lévy processes and their infinite divisibility property, either in the generalization, via umbral Kailath-Segall formula, of the well-known formulae giving elementary symmetric polynomials in terms of power sum symmetric polynomials. The expression of the family of time-space harmonic polynomials here introduced has some connections with the so-called moment representation of various families of multivariate polynomials. Such moment representation has been studied here for the first time in connection with the time-space harmonic property with respect to suitable symbolic multivariate Lévy processes. In particular, multivariate Hermite polynomials and their properties have been studied in connection with a symbolic version of the multivariate Brownian motion, while multivariate Bernoulli and Euler polynomials are represented as powers of multivariate polynomials which are time-space harmonic with respect to suitable multivariate Lévy processes.
Resumo:
The response of high-speed bridges at resonance, particularly under flexural vibrations, constitutes a subject of research for many scientists and engineers at the moment. The topic is of great interest because, as a matter of fact, such kind of behaviour is not unlikely to happen due to the elevated operating speeds of modern rains, which in many cases are equal to or even exceed 300 km/h ( [1,2]). The present paper addresses the subject of the evolution of the wheel-rail contact forces during resonance situations in simply supported bridges. Based on a dimensionless formulation of the equations of motion presented in [4], very similar to the one introduced by Klasztorny and Langer in [3], a parametric study is conducted and the contact forces in realistic situations analysed in detail. The effects of rail and wheel irregularities are not included in the model. The bridge is idealised as an Euler-Bernoulli beam, while the train is simulated by a system consisting of rigid bodies, springs and dampers. The situations such that a severe reduction of the contact force could take place are identified and compared with typical situations in actual bridges. To this end, the simply supported bridge is excited at resonace by means of a theoretical train consisting of 15 equidistant axles. The mechanical characteristics of all axles (unsprung mass, semi-sprung mass, and primary suspension system) are identical. This theoretical train permits the identification of the key parameters having an influence on the wheel-rail contact forces. In addition, a real case of a 17.5 m bridges traversed by the Eurostar train is analysed and checked against the theoretical results. The influence of three fundamental parameters is investigated in great detail: a) the ratio of the fundamental frequency of the bridge and natural frequency of the primary suspension of the vehicle; b) the ratio of the total mass of the bridge and the semi-sprung mass of the vehicle and c) the ratio between the length of the bridge and the characteristic distance between consecutive axles. The main conclusions derived from the investigation are: The wheel-rail contact forces undergo oscillations during the passage of the axles over the bridge. During resonance, these oscillations are more severe for the rear wheels than for the front ones. If denotes the span of a simply supported bridge, and the characteristic distance between consecutive groups of loads, the lower the value of , the greater the oscillations of the contact forces at resonance. For or greater, no likelihood of loss of wheel-rail contact has been detected. The ratio between the frequency of the primary suspension of the vehicle and the fundamental frequency of the bridge is denoted by (frequency ratio), and the ratio of the semi-sprung mass of the vehicle (mass of the bogie) and the total mass of the bridge is denoted by (mass ratio). For any given frequency ratio, the greater the mass ratio, the greater the oscillations of the contact forces at resonance. The oscillations of the contact forces at resonance, and therefore the likelihood of loss of wheel-rail contact, present a minimum for approximately between 0.5 and 1. For lower or higher values of the frequency ratio the oscillations of the contact forces increase. Neglecting the possible effects of torsional vibrations, the metal or composite bridges with a low linear mass have been found to be the ones where the contact forces may suffer the most severe oscillations. If single-track, simply supported, composite or metal bridges were used in high-speed lines, and damping ratios below 1% were expected, the minimum contact forces at resonance could drop to dangerous values. Nevertheless, this kind of structures is very unusual in modern high-speed railway lines.
Resumo:
Con la presente tesi viene esaminato un metodo per modificare la frequenza di risonanza di trasduttori piezoelettrici mediante applicazione di carichi elettrici esterni. L'elaborato inizia con la presentazione dei cristalli utilizzati nel lavoro di tesi, concentrandosi sul processo di fabbricazione di un bimorph cantilever impiegato come convertitore elettromeccanico di energia, la cui frequenza di risonanza è modellizzata analiticamente mediante la legge di Newton e il modello di Euler-Bernoulli. Su tale struttura vengono condotte misure mediante shaker elettrodinamico e analizzatore d'impedenza, ai fini di giusticare il modello analitico presentato. Con lo scopo di sincronizzare la frequenza di risonanza del cantilever con la vibrazione dell'ambiente per massimizzare la potenza disponibile, viene proposto un algoritmo MPPT secondo l'approccio Perturba e Osserva (P&O), al quale è fornita in ingresso la tensione efficace di un layer di materiale piezoelettrico. Valutare la sua risposta in tensione, presenta dei limiti applicativi che hanno portato a prendere in considerazione un approccio totalmente diff�erente, basato sullo sfasamento tra la tensione di un trasduttore piezoelettrico e il segnale di accelerazione impiegato come eccitazione. Misure sperimentali sono state condotte con l'obiettivo di validare l'efficacia di quest'ultimo approccio qualora si voglia sincronizzare la frequenza di risonanza dei piezo con segnali di vibrazione reali.
Resumo:
The effect of unevenness in a bridge deck for the purpose of Structural Health Monitoring (SHM) under operational conditions is studied in this paper. The moving vehicle is modelled as a single degree of freedom system traversing the damaged beam at a constant speed. The bridge is modelled as an Euler-Bernoulli beam with a breathing crack, simply supported at both ends. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. The unevenness in the bridge deck considered is modelled using road classification according to ISO 8606:1995(E). Numerical simulations are conducted considering the effects of changing road surface classes from class A - very good to class E - very poor. Cumulant based statistical parameters, based on a new algorithm are computed on stochastic responses of the damaged beam due to passages of the load in order to calibrate the damage. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are considered. The findings of this paper are important for establishing the expectations from different types of road roughness on a bridge for damage detection purposes using bridge-vehicle interaction where the bridge does not need to be closed for monitoring.
Resumo:
The effects of vehicle speed for Structural Health Monitoring (SHM) of bridges under operational conditions are studied in this paper. The moving vehicle is modelled as a single degree oscillator traversing a damaged beam at a constant speed. The bridge is modelled as simply supported Euler-Bernoulli beam with a breathing crack. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. The unevenness of the bridge deck is modelled using road classification according to ISO 8606:1995(E). The stochastic description of the unevenness of the road surface is used as an aid to monitor the health of the structure in its operational condition. Numerical simulations are conducted considering the effects of changing vehicle speed with regards to cumulant based statistical damage detection parameters. The detection and calibration of damage at different levels is based on an algorithm dependent on responses of the damaged beam due to passages of the load. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are considered. Sensitivity of calibration values is studied. The findings of this paper are important for establishing the expectations from different vehicle speeds on a bridge for damage detection purposes using bridge-vehicle interaction where the bridge does not need to be closed for monitoring. The identification of bunching of these speed ranges provides guidelines for using the methodology developed in the paper.
Resumo:
En este trabajo se introducen, en el contexto del Método de Elementos Finitos, dos alternativas posibles en relación con el concepto de acción repartida equivalente. La primera consiste en emplear pocos elementos, elevando el orden de dicha acción, mientras que la segunda se basa en emplear un mayor número de elementos dejando la acción en el orden más bajo posible. Se ilustran ambas situaciones mediante aplicaciones a los modelos de vigas de Timoshenko y Bernoulli-Euler, empleando estas acciones con diferentes órdenes, las cuales aproximan a la acción original, mediante polinomios ortogonales de Legendre en cada elemento. Como conclusión destacable, se indica que cuando se considera el menor número posible de elementos, es decir uno, para los casos de carga poco regular, ha bastado con utilizar acciones repartidas equivalentes de orden ligeramente superior al mínimo (orden cuatro), para obtener una excelente aproximación en los desplazamientos, giros y esfuerzos en el interior de los elementos.
Resumo:
Neste artigo estudamos a relação entre a taxa de juros e o hiato do produto no Brasil através da estimação de modelos Novo-Keynesianos. Para tanto, estimamos os modelos por três métodos: (1) método generalizados dos momentos, (2) máxima verossimilhança utilizando dados de expectativa divulgados pelo Banco Central do Brasil e (3) máxima verossimilhança utilizando variáveis de expectativa estimadas por um modelo VAR. As conclusões são altamente dependentes do método de estimação. Ao utilizar (1), os resultados indicam uma relação espúria entre a taxa de juros real e o hiato. Entretanto, as conclusões originadas de (2) indicam que somente o hiato defasado seria uma variável relevante para a nossa especificação. Ao estimar o modelo por (3), as estimativas corroboram os resultados obtidos com o método generalizados dos momentos.
Resumo:
The present investigation includes a study of Leonhard Euler and the pentagonal numbers is his article Mirabilibus Proprietatibus Numerorum Pentagonalium - E524. After a brief review of the life and work of Euler, we analyze the mathematical concepts covered in that article as well as its historical context. For this purpose, we explain the concept of figurate numbers, showing its mode of generation, as well as its geometric and algebraic representations. Then, we present a brief history of the search for the Eulerian pentagonal number theorem, based on his correspondence on the subject with Daniel Bernoulli, Nikolaus Bernoulli, Christian Goldbach and Jean Le Rond d'Alembert. At first, Euler states the theorem, but admits that he doesn t know to prove it. Finally, in a letter to Goldbach in 1750, he presents a demonstration, which is published in E541, along with an alternative proof. The expansion of the concept of pentagonal number is then explained and justified by compare the geometric and algebraic representations of the new pentagonal numbers pentagonal numbers with those of traditional pentagonal numbers. Then we explain to the pentagonal number theorem, that is, the fact that the infinite product(1 x)(1 xx)(1 x3)(1 x4)(1 x5)(1 x6)(1 x7)... is equal to the infinite series 1 x1 x2+x5+x7 x12 x15+x22+x26 ..., where the exponents are given by the pentagonal numbers (expanded) and the sign is determined by whether as more or less as the exponent is pentagonal number (traditional or expanded). We also mention that Euler relates the pentagonal number theorem to other parts of mathematics, such as the concept of partitions, generating functions, the theory of infinite products and the sum of divisors. We end with an explanation of Euler s demonstration pentagonal number theorem