894 resultados para Model-Based Design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corresponding to the updated flow pattern map presented in Part I of this study, an updated general flow pattern based flow boiling heat transfer model was developed for CO2 using the Cheng-Ribatski-Wojtan-Thome [L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes, Int. J. Heat Mass Transfer 49 (2006) 4082-4094; L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, Erratum to: ""New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside tubes"" [Heat Mass Transfer 49 (21-22) (2006) 4082-4094], Int. J. Heat Mass Transfer 50 (2007) 391] flow boiling heat transfer model as the starting basis. The flow boiling heat transfer correlation in the dryout region was updated. In addition, a new mist flow heat transfer correlation for CO2 was developed based on the CO2 data and a heat transfer method for bubbly flow was proposed for completeness sake. The updated general flow boiling heat transfer model for CO2 covers all flow regimes and is applicable to a wider range of conditions for horizontal tubes: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m(2) s, heat fluxes from 1.8 to 46 kW/m(2) and saturation temperatures from -28 to 25 degrees C (reduced pressures from 0.21 to 0.87). The updated general flow boiling heat transfer model was compared to a new experimental database which contains 1124 data points (790 more than that in the previous model [Cheng et al., 2006, 2007]) in this study. Good agreement between the predicted and experimental data was found in general with 71.4% of the entire database and 83.2% of the database without the dryout and mist flow data predicted within +/-30%. However, the predictions for the dryout and mist flow regions were less satisfactory due to the limited number of data points, the higher inaccuracy in such data, scatter in some data sets ranging up to 40%, significant discrepancies from one experimental study to another and the difficulties associated with predicting the inception and completion of dryout around the perimeter of the horizontal tubes. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimal dosing schedule for melphalan therapy of recurrent malignant melanoma in isolated limb perfusions has been examined using a physiological pharmacokinetic model with data from isolated rat hindlimb perfusions (IRHP), The study included a comparison of melphalan distribution in IRHP under hyperthermia and normothermia conditions. Rat hindlimbs were perfused with Krebs-Henseleit buffer containing 4.7% bovine serum albumin at 37 or 41.5 degrees C at a flow rate of 4 ml/min. Concentrations of melphalan in perfusate and tissues were determined by high performance liquid chromatography with fluorescence detection, The concentration of melphalan in perfusate and tissues was linearly related to the input concentration. The rate and amount of melphalan uptake into the different tissues was higher at 41.5 degrees C than at 37 degrees C. A physiological pharmacokinetic model was validated from the tissue and perfusate time course of melphalan after melphalan perfusion. Application of the model involved the amount of melphalan exposure in the muscle, skin and fat in a recirculation system was related to the method of melphalan administration: single bolus > divided bolus > infusion, The peak concentration of melphalan in the perfusate was also related to the method of administration in the same order, Infusing the total dose of melphalan over 20 min during a 60 min perfusion optimized the exposure of tissues to melphalan whilst minimizing the peak perfusate concentration of melphalan. It is suggested that this method of melphalan administration may be preferable to other methods in terms of optimizing the efficacy of melphalan whilst minimizing the limb toxicity associated with its use in isolated limb perfusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the use of Raman spectroscopy to identify the spectral differences between normal (N), benign hyperplasia (BPH) and adenocarcinoma (CaP) in fragments of prostate biopsies in vitro with the aim of developing a spectral diagnostic model for tissue classification. A dispersive Raman spectrometer was used with 830 nm wavelength and 80 mW excitation. Following Raman data collection and tissue histopathology (48 fragments diagnosed as N, 43 as BPH and 14 as CaP), two diagnostic models were developed in order to extract diagnostic information: the first using PCA and Mahalanobis analysis techniques and the second one a simplified biochemical model based on spectral features of cholesterol, collagen, smooth muscle cell and adipocyte. Spectral differences between N, BPH and CaP tissues, were observed mainly in the Raman bands associated with proteins, lipids, nucleic and amino acids. The PCA diagnostic model showed a sensitivity and specificity of 100%, which indicates the ability of PCA and Mahalanobis distance techniques to classify tissue changes in vitro. Also, it was found that the relative amount of collagen decreased while the amount of cholesterol and adipocyte increased with severity of the disease. Smooth muscle cell increased in BPH tissue. These characteristics were used for diagnostic purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the results of Raman spectroscopy applied to the classification of arterial tissue based on a simplified model using basal morphological and biochemical information extracted from the Raman spectra of arteries. The Raman spectrograph uses an 830-nm diode laser, imaging spectrograph, and a CCD camera. A total of 111 Raman spectra from arterial fragments were used to develop the model, and those spectra were compared to the spectra of collagen, fat cells, smooth muscle cells, calcification, and cholesterol in a linear fit model. Non-atherosclerotic (NA), fatty and fibrous-fatty atherosclerotic plaques (A) and calcified (C) arteries exhibited different spectral signatures related to different morphological structures presented in each tissue type. Discriminant analysis based on Mahalanobis distance was employed to classify the tissue type with respect to the relative intensity of each compound. This model was subsequently tested prospectively in a set of 55 spectra. The simplified diagnostic model showed that cholesterol, collagen, and adipocytes were the tissue constituents that gave the best classification capability and that those changes were correlated to histopathology. The simplified model, using spectra obtained from a few tissue morphological and biochemical constituents, showed feasibility by using a small amount of variables, easily extracted from gross samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new ball mill scale-up procedure is developed which uses laboratory data to predict the performance of MI-scale ball mill circuits. This procedure contains two laboratory tests. These laboratory tests give the data for the determination of the parameters of a ball mill model. A set of scale-up criteria then scales-up these parameters. The procedure uses the scaled-up parameters to simulate the steady state performance of the full-scale mill circuit. At the end of the simulation, the scale-up procedure gives the size distribution, the volumetric flowrate and the mass flowrate of all the streams in the circuit, and the mill power draw. A worked example shows how the new ball mill scale-up procedure is executed. This worked example uses laboratory data to predict the performance of a full-scale re-grind mill circuit. This circuit consists of a ball mill in closed circuit with hydrocyclones. The MI-scale ball mill has a diameter (inside liners) of 1.85m. The scale-up procedure shows that the full-scale circuit produces a product (hydrocyclone overflow) that has an 80% passing size of 80 mum. The circuit has a recirculating load of 173%. The calculated power draw of the full-scale mill is 92kW (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation: This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. Results: The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In microarray studies, the application of clustering techniques is often used to derive meaningful insights into the data. In the past, hierarchical methods have been the primary clustering tool employed to perform this task. The hierarchical algorithms have been mainly applied heuristically to these cluster analysis problems. Further, a major limitation of these methods is their inability to determine the number of clusters. Thus there is a need for a model-based approach to these. clustering problems. To this end, McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as a model-based -approach, we present a case study involving the application of EMMIX-GENE to the breast cancer data as studied recently in van 't Veer et al. [10]. Our analysis considers the problem of clustering the tissue samples on the basis of the genes which is a non-standard problem because the number of genes greatly exceed the number of tissue samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of genes down to a more computationally manageable size. The results from this analysis also emphasise the difficulty associated with the task of separating two tissue groups on the basis of a particular subset of genes. These results also shed light on why supervised methods have such a high misallocation error rate for the breast cancer data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasing number of studies shows that the glycogen-accumulating organisms (GAOs) can survive and may indeed proliferate under the alternating anaerobic/aerobic conditions found in EBPR systems, thus forming a strong competitor of the polyphosphate-accumulating organisms (PAOs). Understanding their behaviors in a mixed PAO and GAO culture under various operational conditions is essential for developing operating strategies that disadvantage the growth of this group of unwanted organisms. A model-based data analysis method is developed in this paper for the study of the anaerobic PAO and GAO activities in a mixed PAO and GAO culture. The method primarily makes use of the hydrogen ion production rate and the carbon dioxide transfer rate resulting from the acetate uptake processes by PAOs and GAOs, measured with a recently developed titration and off-gas analysis (TOGA) sensor. The method is demonstrated using the data from a laboratory-scale sequencing batch reactor (SBR) operated under alternating anaerobic and aerobic conditions. The data analysis using the proposed method strongly indicates a coexistence of PAOs and GAOs in the system, which was independently confirmed by fluorescent in situ hybridization (FISH) measurement. The model-based analysis also allowed the identification of the respective acetate uptake rates by PAOs and GAOs, along with a number of kinetic and stoichiometric parameters involved in the PAO and GAO models. The excellent fit between the model predictions and the experimental data not involved in parameter identification shows that the parameter values found are reliable and accurate. It also demonstrates that the current anaerobic PAO and GAO models are able to accurately characterize the PAO/GAO mixed culture obtained in this study. This is of major importance as no pure culture of either PAOs or GAOs has been reported to date, and hence the current PAO and GAO models were developed for the interpretation of experimental results of mixed cultures. The proposed method is readily applicable for detailed investigations of the competition between PAOs and GAOs in enriched cultures. However, the fermentation of organic substrates carried out by ordinary heterotrophs needs to be accounted for when the method is applied to the study of PAO and GAO competition in full-scale sludges. (C) 2003 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach for the analysis of uncertainty propagation in reliability-based design optimization of composite laminate structures is presented. Using the Uniform Design Method (UDM), a set of design points is generated over a domain centered on the mean reference values of the random variables. A methodology based on inverse optimal design of composite structures to achieve a specified reliability level is proposed, and the corresponding maximum load is outlined as a function of ply angle. Using the generated UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on an evolutionary learning process. Then, a Monte Carlo simulation using ANN development is performed to simulate the behavior of the critical Tsai number, structural reliability index, and their relative sensitivities as a function of the ply angle of laminates. The results are generated for uniformly distributed random variables on a domain centered on mean values. The statistical analysis of the results enables the study of the variability of the reliability index and its sensitivity relative to the ply angle. Numerical examples showing the utility of the approach for robust design of angle-ply laminates are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel approach to WLAN propagation models for use in indoor localization. The major goal of this work is to eliminate the need for in situ data collection to generate the Fingerprinting map, instead, it is generated by using analytical propagation models such as: COST Multi-Wall, COST 231 average wall and Motley- Keenan. As Location Estimation Algorithms kNN (K-Nearest Neighbour) and WkNN (Weighted K-Nearest Neighbour) were used to determine the accuracy of the proposed technique. This work is based on analytical and measurement tools to determine which path loss propagation models are better for location estimation applications, based on Receive Signal Strength Indicator (RSSI).This study presents different proposals for choosing the most appropriate values for the models parameters, like obstacles attenuation and coefficients. Some adjustments to these models, particularly to Motley-Keenan, considering the thickness of walls, are proposed. The best found solution is based on the adjusted Motley-Keenan and COST models that allows to obtain the propagation loss estimation for several environments.Results obtained from two testing scenarios showed the reliability of the adjustments, providing smaller errors in the measured values values in comparison with the predicted values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of selecting suppliers/partners is a crucial and important part in the process of decision making for companies that intend to perform competitively in their area of activity. The selection of supplier/partner is a time and resource-consuming task that involves data collection and a careful analysis of the factors that can positively or negatively influence the choice. Nevertheless it is a critical process that affects significantly the operational performance of each company. In this work, there were identified five broad selection criteria: Quality, Financial, Synergies, Cost, and Production System. Within these criteria, it was also included five sub-criteria. After the identification criteria, a survey was elaborated and companies were contacted in order to understand which factors have more weight in their decisions to choose the partners. Interpreted the results and processed the data, it was adopted a model of linear weighting to reflect the importance of each factor. The model has a hierarchical structure and can be applied with the Analytic Hierarchy Process (AHP) method or Value Analysis. The goal of the paper it's to supply a selection reference model that can represent an orientation/pattern for a decision making on the suppliers/partners selection process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural health monitoring has long been identified as a prominent application of Wireless Sensor Networks (WSNs), as traditional wired-based solutions present some inherent limitations such as installation/maintenance cost, scalability and visual impact. Nevertheless, there is a lack of ready-to-use and off-the-shelf WSN technologies that are able to fulfill some most demanding requirements of these applications, which can span from critical physical infrastructures (e.g. bridges, tunnels, mines, energy grid) to historical buildings or even industrial machinery and vehicles. Low-power and low-cost yet extremely sensitive and accurate accelerometer and signal acquisition hardware and stringent time synchronization of all sensors data are just examples of the requirements imposed by most of these applications. This paper presents a prototype system for health monitoring of civil engineering structures that has been jointly conceived by a team of civil, and electrical and computer engineers. It merges the benefits of standard and off-the-shelf (COTS) hardware and communication technologies with a minimum set of custom-designed signal acquisition hardware that is mandatory to fulfill all application requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion. © 2014 Springer-Verlag Berlin Heidelberg.