986 resultados para Missions, American -- India.
Resumo:
OBJECTIVE: The study of ethnically homogeneous populations may help to identify schizophrenia risk loci. The authors conducted a genomewide linkage scan for schizophrenia in an Indian population. METHOD: Participants were 441 individuals (262 affected probands and siblings) who were recruited primarily from one ethnically homogeneous group, the Tamil Brahmin caste, although individuals from other geographically proximal castes also participated. Genotyping of 124 affected sibling pair pedigrees was performed with 402 short tandem repeat polymorphisms. Linkage analyses were conducted using nonparametric exponential LOD (logarithm of the odds ratio for linkage) scores and parametric heterogeneity LOD scores. Parametric heterogeneity scores were calculated using simple dominant and recessive models, correcting for multiple statistics. The data were examined for evidence of consanguinity. Genomewide significance levels were determined using 10,000 gene dropping simulations. RESULTS: These findings revealed genomewide significant linkage to chromosome 1p31.1, through the use of both exponential and heterogeneity LOD scores, incorporating correction for multiple statistics and mild consanguinity. The estimated sibling recurrence risk associated with this putative locus was 1.95. Analysis for heterogeneity LOD scores also detected suggestive linkage to chromosomes 13q22.1 and 16q12.2. Using 117 tag single nucleotide polymorphisms (SNPs), family-based association analyses of phosphodiesterase 4B (PDE4B), the closest schizophrenia candidate gene, detected no convincing evidence of association, suggesting that the chromosome 1 peak represents a novel risk locus. CONCLUSIONS: This is the first study-to the authors' knowledge-to report significant linkage of schizophrenia to chromosome 1p31.1. Further investigation of this chromosome region in diverse populations is warranted to identify underlying sequence variants.
Resumo:
Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year(-1) and the evapotranspiration was about 900 mm year(-1) out of which 100 mm year(-1) was uptake from the deep saprolite horizons. The stream flow was 100 mm year(-1) while the groundwater underflow was 80 mm year(-1). The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Government of India has announced the Greening India Mission (GIM) under the National Climate Change Action Plan. The Mission aims to restore and afforest about 10 mha over the period 2010-2020 under different sub-missions covering moderately dense and open forests, scrub/grasslands, mangroves, wetlands, croplands and urban areas. Even though the main focus of the Mission is to address mitigation and adaptation aspects in the context of climate change, the adaptation component is inadequately addressed. There is a need for increased scientific input in the preparation of the Mission. The mitigation potential is estimated by simply multiplying global default biomass growth rate values and area. It is incomplete as it does not include all the carbon pools, phasing, differing growth rates, etc. The mitigation potential estimated using the Comprehensive Mitigation Analysis Process model for the GIM for the year 2020 has the potential to offset 6.4% of the projected national greenhouse gas emissions, compared to the GIM estimate of only 1.5%, excluding any emissions due to harvesting or disturbances. The selection of potential locations for different interventions and species choice under the GIM must be based on the use of modelling, remote sensing and field studies. The forest sector provides an opportunity to promote mitigation and adaptation synergy, which is not adequately addressed in the GIM. Since many of the interventions proposed are innovative and limited scientific knowledge exists, there is need for an unprecedented level of collaboration between the research institutions and the implementing agencies such as the Forest Departments, which is currently non-existent. The GIM could propel systematic research into forestry and climate change issues and thereby provide global leadership in this new and emerging science.
Resumo:
We have compared the total as well as fine mode aerosol optical depth (tau and tau(fine)) retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua (2001-2005) with the equivalent parameters derived by Aerosol Robotic Network (AERONET) at Kanpur (26.45 degrees N, 80.35 degrees E), northern India. MODIS Collection 005 (C005)-derived tau(0.55) was found to be in good agreement with the AERONET measurements. The tau(fine) and eta (tau(fine)/tau) were, however, biased low significantly in most matched cases. A new set of retrieval with the use of absorbing aerosol model (SSA similar to 0.87) with increased visible surface reflectance provided improved tau and tau(fine) at Kanpur. The new derivation of eta also compares well qualitatively with an independent set of in situ measurements of accumulation mass fraction over much of the southern India. This suggests that though MODIS land algorithm has limited information to derive size properties of aerosols over land, more accurate parameterization of aerosol and surface properties within the existing C005 algorithm may improve the accuracy of size-resolved aerosol optical properties. The results presented in this paper indicate that there is a need to reconsider the surface parameterization and assumed aerosol properties in MODIS C005 algorithm over the Indian region in order to retrieve more accurate aerosol optical and size properties, which are essential to quantify the impact of human-made aerosols on climate.
Resumo:
The similar to 2500 km long Himalayan arc has experienced three large to great earthquakes of M-w 7.8 to 8.4 during the past century, but none produced surface rupture. Paleoseismic studies have been conducted during the last decade to begin understanding the timing, size, rupture extent, return period, and mechanics of the faulting associated with the occurrence of large surface rupturing earthquakes along the similar to 2500 km long Himalayan Frontal Thrust (HFT) system of India and Nepal. The previous studies have been limited to about nine sites along the western two-thirds of the HFT extending through northwest India and along the southern border of Nepal. We present here the results of paleoseismic investigations at three additional sites further to the northeast along the HFT within the Indian states of West Bengal and Assam. The three sites reside between the meizoseismal areas of the 1934 Bihar-Nepal and 1950 Assam earthquakes. The two westernmost of the sites, near the village of Chalsa and near the Nameri Tiger Preserve, show that offsets during the last surface rupture event were at minimum of about 14 m and 12 m, respectively. Limits on the ages of surface rupture at Chalsa (site A) and Nameri (site B), though broad, allow the possibility that the two sites record the same great historical rupture reported in Nepal around A.D. 1100. The correlation between the two sites is supported by the observation that the large displacements as recorded at Chalsa and Nameri would most likely be associated with rupture lengths of hundreds of kilometers or more and are on the same order as reported for a surface rupture earthquake reported in Nepal around A.D. 1100. Assuming the offsets observed at Chalsa and Nameri occurred synchronously with reported offsets in Nepal, the rupture length of the event would approach 700 to 800 km. The easternmost site is located within Harmutty Tea Estate (site C) at the edges of the 1950 Assam earthquake meizoseismal area. Here the most recent event offset is relatively much smaller (<2.5 m), and radiocarbon dating shows it to have occurred after A.D. 1100 (after about A.D. 1270). The location of the site near the edge of the meizoseismal region of the 1950 Assam earthquake and the relatively lesser offset allows speculation that the displacement records the 1950 M-w 8.4 Assam earthquake. Scatter in radiocarbon ages on detrital charcoal has not resulted in a firm bracket on the timing of events observed in the trenches. Nonetheless, the observations collected here, when taken together, suggest that the largest of thrust earthquakes along the Himalayan arc have rupture lengths and displacements of similar scale to the largest that have occurred historically along the world's subduction zones.
Resumo:
This article discusses the potential of bio-dimethyl ether (DME) as a promising fuel for India in the transportation sector where a majority of imported petroleum in the form of diesel is used. Specifically, the suitability of DME in terms of its properties vis-a-vis those of diesel, ability to liquefy DME at low pressures similar to liquefied petroleum gas (LPG), and ease of production from renewable feedstock (biomass), and most importantly, very low emissions including near-zero soot levels are some of the features that make it an attractive option. A detailed review presents the state-of-the-art on various aspects such as estimates of potential bio-DME production, methods of synthesis of bio-DME, important physicochemical properties, fuel-injection system-related concerns (both conventional and common-rail system), fuel spray characteristics which have a direct bearing on the engine performance, and finally, exhaust emissions. Future research directions covering all aspects from production to utilization are summarized (C) 2010 American Institute of Physics. doi:10.1063/1.3489529]
Resumo:
The demographic history of India was examined by comparing mtDNA sequences obtained from members of three culturally divergent Indian subpopulations (endogamous caste groups). While an inferred tree revealed some clustering according to caste affiliation, there was no clear separation into three genetically distinct groups along caste lines. Comparison of pairwise nucleotide difference distributions, however, did indicate a difference in growth patterns between two of the castes. The Brahmin population appears to have undergone either a rapid expansion or steady growth. The low-ranking Mukri caste, however, may have either maintained a roughly constant population size or undergone multiple bottlenecks during that period. Comparison of the Indian sequences to those obtained from other populations, using a tree, revealed that the Indian sequences, along with ah other non-African samples, form a starlike cluster. This cluster may represent a major expansion, possibly originating in southern Asia, taking place at some point after modern humans initially left Africa.
Resumo:
Present work shows the feasibility of decentralized energy options for the Tumkur district in India. Decentralized energy planning (DEP) involves scaling down energy planning to subnational or regional scales. The important aspect of the energy planning at decentralized level would be to prepare an area-based DEP to meet energy needs and development of alternate energy sources at least-cost to the economy and environment. The geographical coverage and scale reflects the level at which the analysis takes place, which is an important factor in determining the structure of models. In the present work, DEP modeling under different scenarios has been carried out for Tumkur district of India for the year 2020. DEP model is suitably scaled for obtaining the optimal mix of energy resources and technologies using a computer-based goal programming technique. The rural areas of the Tumkur district have different energy needs. Results show that electricity needs can be met by biomass gasifier technology, using biomass feedstock produced by allocating only 12% of the wasteland in the district at 8 t/ha/yr of biomass productivity. Surplus electricity can be produced by adopting the option of biomass power generation from energy plantations. The surplus electricity generated can be supplied to the grid. The sustainable development scenario is a least cost scenario apart from promoting self-reliance, local employment, and environmental benefits. (C) 2010 American Institute of Chemical Engineers Environ Prog, 30: 248-258, 2011
Resumo:
[1] During a comprehensive aerosol field campaign, simultaneous measurements were made of aerosol spectral optical depths, black carbon mass concentration (M-b), total (M-t) and size segregated aerosol mass concentrations over an urban continental location, Bangalore (13 degreesN, 77 degreesE, 960 m msl), in India. Large amounts of BC were observed; both in absolute terms and fraction of total mass (similar to11%) and submicron mass (similar to23%) implying a significantly low single scatter albedo. The aerosol visible optical depth (tau(p)) was in the range 0.24 to 0.45. Estimated surface forcing is as high as -23 W m(-2) and top of the atmosphere (TOA) forcing is +5 Wm(-2) during relatively cleaner periods (tau(p) similar to 0.24). The net atmospheric absorption translates to an atmospheric heating of similar to0.8 K day(-1) for cleaner periods and similar to1.5 K day(-1) for less cleaner periods (tau(p) similar to 0.45). Our observations raise several issues, which may have impacts to regional climate and monsoon.
Resumo:
Lantana camara, a shrub of Central and South American origin, has become invasive across dry forests worldwide. The effect of the thicket-forming habit of L. camara as a dispersal and recruitment barrier in a community of native woody seedlings was examined in a 50-ha permanent plot located in the seasonally dry forest of Mudumalai, southern India. Sixty 100-m(2) plots were enumerated for native woody seedlings between 10-100 cm in height. Of these, 30 plots had no L. camara thickets, while the other 30 had dense thickets. The frequency of occurrence and abundance of seedlings were modelled as a function of dispersal mode (mammal, bird or mechanical) and affinities to forest habitats (dry forest, moist forest or ubiquitous) as well as presence or absence of dense L. camara thickets. Furthermore, frequency of occurrence and abundance of individual species were also compared between thickets and no L. camara. At the community level, L. camara density, dispersal mode and forest habitat affinities of species determined both frequency of occurrence and abundance of seedlings, with the abundance of dry-forest mammal-dispersed species and ubiquitous mechanically dispersed species being significantly lower under L. camara thickets. Phyllanthus emblica and Kydia calycina were found to be significantly less abundant under L. camara, whereas most other species were not affected by the presence of thickets. It was inferred that, by affecting the establishment of native tree seedlings, L. camara thickets could eventually alter the community composition of such forests.
Resumo:
The swirling colors of aurorae, familiar to many in polar communities, can occasionally be seen at middle latitudes in locations such as southern Canada and central Europe. But in rare instances, aurorae can even be seen in the tropics. On 6 February 1872, news of the sighting of one such aurora was carried by the Times of India newspaper. The aurora occurred on 4 February 1872 and, as noted, was also observed over the Middle East.