971 resultados para Missão CoRoT
Resumo:
Este artigo apresenta um estudo sobre as missões religiosas discutindo as produções antropológicas referentes a este tema, presentes na análise de diversos autores da antropologia da religião. A autora faz uma análise das produções acadêmicas desde meados do século passado para compreender as relações travadas entre missionários e antropólogos. Relata como os antropólogos pensam as missões e faz uma farta revisão teórica sobre as interpretações antropológicas em torno das missões.
Resumo:
Pós-graduação em História - FCLAS
Resumo:
Pós-graduação em História - FCLAS
Resumo:
Context. Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. These measurements indicate that planets of similar mass can have very different radii. For low-density planets, it is generally assumed that they are inflated owing to their proximity to the host-star. To determine the causes of this inflation, it is necessary to obtain a statistically significant sample of planets with precisely measured masses and radii. Aims. The CoRoT space mission allows us to achieve a very high photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. Methods. After excluding alternative physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch, we observed additional transits with the TRAPPIST and Euler telescopes. Using HARPS spectra obtained during the transit, we then determine the projected angle between the spin of the star and the orbit of the planet. Results. We find that the host star of CoRoT-19b is an inactive F9V-type star close to the end of its main-sequence life. The host star has a mass M-* = 1.21 +/- 0.05 M-circle dot and radius R-* = 1.65 +/- 0.04 R-circle dot. The planet has a mass of M-P = 1.11 +/- 0.06 M-Jup and radius of R-P = 1.29 +/- 0.03 R-Jup. The resulting bulk density is only rho = 0.71 +/- 0.06 g cm (3), which is much lower than that for Jupiter. Conclusions. The exoplanet CoRoT-19b is an example of a giant planet of almost the same mass as Jupiter but a approximate to 30% larger radius.
Resumo:
We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 +/- 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search for possible background eclipsing binaries conducted at CFHT and OGS concluded with a very low risk of false positives. The usual techniques of combining RV and transit data simultaneously were used to derive stellar and planetary parameters. The planet has a mass of M-p = 2.8 +/- 0.3 M-Jup, a radius of R-pl = 1.05 +/- 0.13 R-Jup, a density of approximate to 3 gcm(-3). RV data also clearly reveal a nonzero eccentricity of e = 0.16 +/- 0.02. The planet orbits a mature G0 main sequence star of V = 15.5 mag, with a mass M-star = 1.14 +/- 0.08 M-circle dot, a radius R-star = 1. 61 +/- 0.18 R-circle dot and quasi-solar abundances. The age of the system is evaluated to be 7 Gyr, not far from the transition to subgiant, in agreement with the rather large stellar radius. The two features of a significant eccentricity of the orbit and of a fairly high density are fairly uncommon for a hot Jupiter. The high density is, however, consistent with a model of contraction of a planet at this mass, given the age of the system. On the other hand, at such an age, circularization is expected to be completed. In fact, we show that for this planetary mass and orbital distance, any initial eccentricity should not totally vanish after 7 Gyr, as long as the tidal quality factor Q(p) is more than a few 10(5), a value that is the lower bound of the usually expected range. Even if CoRoT-23b features a density and an eccentricity that are atypical of a hot Jupiter, it is thus not an enigmatic object.
Resumo:
Aims. We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 +/- 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 +/- 0.1. We discuss this value and also derive the mass and radius of the planet. Methods. We analyse the photometric transit curve of CoRoT-16 given by the CoRoT satellite, and radial velocity data from the HARPS and HIRES spectrometers. A combined analysis using a Markov chain Monte Carlo algorithm is used to get the system parameters. Results. CoRoT-16b is a 0.535 -0.083/+0.085 M-J, 1.17 -0.14/+0.16 R-J hot Jupiter with a density of 0.44 -0.14/+0.21 g cm(-3). Despite its short orbital distance (0.0618 +/- 0.0015 AU) and the age of the parent star (6.73 +/- 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very uncommon for this type of objects as tidal effects tend to circularise the orbit. This value is discussed taking into account the characteristics of the star and the observation accuracy.
Resumo:
Context. Be stars are rapidly rotating stars with a circumstellar decretion disk. They usually undergo pressure and/or gravity pulsation modes excited by the kappa-mechanism, i.e. an effect of the opacity of iron-peak elements in the envelope of the star. In the Milky Way, p-modes are observed in stars that are hotter than or equal to the B3 spectral type, while g-modes are observed at the B2 spectral type and cooler. Aims. We observed a B0IVe star, HD51452, with the high-precision, high-cadence photometric CoRoT satellite and high-resolution, ground-based HARPS and SOPHIE spectrographs to study its pulsations in great detail. We also used the lower resolution spectra available in the BeSS database. Methods. We analyzed the CoRoT and spectroscopic data with several methods: CLEAN-NG, FREQFIND, and a sliding window method. We also analyzed spectral quantities, such as the violet over red (V/R) emission variations, to obtain information about the variation in the circumstellar environment. We calculated a stellar structure model with the ESTER code to test the various interpretation of the results. Results. We detect 189 frequencies of variations in the CoRoT light curve in the range between 0 and 4.5 c d(-1). The main frequencies are also recovered in the spectroscopic data. In particular we find that HD51452 undergoes gravito-inertial modes that are not in the domain of those excited by the kappa-mechanism. We propose that these are stochastic modes excited in the convective zones and that at least some of them are a multiplet of r-modes (i.e. subinertial modes mainly driven by the Coriolis acceleration). Stochastically excited gravito-inertial modes had never been observed in any star, and theory predicted that their very low amplitudes would be undetectable even with CoRoT. We suggest that the amplitudes are enhanced in HD51452 because of the very rapid stellar rotation. In addition, we find that the amplitude variations of these modes are related to the occurrence of minor outbursts. Conclusions. Thanks to CoRoT data, we have detected a new kind of pulsations in HD51452, which are stochastically excited gravito-inertial modes, probably due to its very rapid rotation. These modes are probably also present in other rapidly rotating hot Be stars.
Resumo:
CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 ( LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008. Transits were discovered during the light curve processing. Radial velocity follow-up observations, however, were performed mainly by the 10-m Keck telescope in January 2010. The companion CoRoT-21b is a Jupiter-like planet of 2.26 +/- 0.33 Jupiter masses and 1.30 +/- 0.14 Jupiter radii in an circular orbit of semi-major axis 0.0417 +/- 0.0011 AU and an orbital period of 2.72474 +/- 0.00014 days. The planetary bulk density is ( 1.36 +/- 0.48) x 10(3) kg m(-3), very similar to the bulk density of Jupiter, and follows an M-1/3 - R relation like Jupiter. The F8IV star is a sub-giant star of 1.29 +/- 0.09 solar masses and 1.95 +/- 0.2 solar radii. The star and the planet exchange extreme tidal forces that will lead to orbital decay and extreme spin-up of the stellar rotation within 800 Myr if the stellar dissipation is Q(*)/k2(*) <= 107.
Resumo:
Context. CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose lightcurves have transit-like features. An extensive analytical and observational follow-up effort is undertaken to classify these candidates. Aims. We present the list of planetary transit candidates from the CoRoT LRa01 star field in the Monoceros constellation toward the Galactic anti-center direction. The CoRoT observations of LRa01 lasted from 24 October 2007 to 3 March 2008. Methods. We acquired and analyzed 7470 chromatic and 3938 monochromatic lightcurves. Instrumental noise and stellar variability were treated with several filtering tools by different teams from the CoRoT community. Different transit search algorithms were applied to the lightcurves. Results. Fifty-one stars were classified as planetary transit candidates in LRa01. Thirty-seven (i.e., 73% of all candidates) are "good" planetary candidates based on photometric analysis only. Thirty-two (i.e., 87% of the "good" candidates) have been followed-up. At the time of writing twenty-two cases were solved and five planets were discovered: three transiting hot-Jupiters (CoRoT-5b, CoRoT-12b, and CoRoT-21b), the first terrestrial transiting planet (CoRoT-7b), and another planet in the same system (CoRoT-7c, detected by radial velocity survey only). Evidence of another non-transiting planet in the CoRoT-7 system, namely CoRoT-7d, was recently found as well.
Resumo:
We report the discovery by the CoRoT space mission of a new giant planet, CoRoT-20b. The planet has a mass of 4.24 +/- 0.23 M-Jup and a radius of 0.84 +/- 0.04 R-Jup. With a mean density of 8.87 +/- 1.10 g cm(-3), it is among the most compact planets known so far. Evolutionary models for the planet suggest a mass of heavy elements of the order of 800 M-circle plus if embedded in a central core, requiring a revision either of the planet formation models or both planet evolution and structure models. We note however that smaller amounts of heavy elements are expected by more realistic models in which they are mixed throughout the envelope. The planet orbits a G-type star with an orbital period of 9.24 days and an eccentricity of 0.56. The star's projected rotational velocity is v sin i = 4.5 +/- 1.0 km s(-1), corresponding to a spin period of 11.5 +/- 3.1 days if its axis of rotation is perpendicular to the orbital plane. In the framework of Darwinian theories and neglecting stellar magnetic breaking, we calculate the tidal evolution of the system and show that CoRoT-20b is presently one of the very few Darwin-stable planets that is evolving toward a triple synchronous state with equality of the orbital, planetary and stellar spin periods.
Resumo:
The two main tools to determine the dynamical and physical parameters of exoplanet systems are the radial velocity (RV) measurements and, when available, transit timings. The two techniques are complementary: The RV's allow us to know some of the orbital elements while the transit timings allow us to obtain the orbital inclination and planetary radius, impossible of obtain from the RV, and to resolve the indetermination in the determination of the planet mass from the RV's. The space observation of transiting planets is however not limited to transit times. They extend to long periods of time and are precise enough to provide information on variations along the orbit. Besides the effects of stellar rotation, deserve mention the Doppler shift in the radiation flux, as consequence of stellar movement around the center of mass, or Beaming Effect (BE); the Ellipsoidal Variability (EV) due to the tidal deformation of the star due to the gravitation of its close companion; and the Reflection (ER) of the stellar radiation incident on the planet and re-emitted to the observer. In the case of large hot Jupiters, these effects are enhanced by the strong gravitational interaction and the analysis of the light variation allows us independent estimates of the mass and radius of planet. The planetary system CoRoT 3 is favorable for such analysis. In this case, the secondary is a brown dwarf whose mass is of the order of 22Mj. We show results obtained from the analysis of 35 RV measurements, 236999 photometric observations and 11 additional RV observations made during a transit to determine the star rotation via the Rossiter-McLaughlin effect. The results obtained from this determination are presented in this communication. The results are compared to those resulting from other determinations.
Resumo:
Context. To date, the CoRoT space mission has produced more than 124 471 light curves. Classifying these curves in terms of unambiguous variab ility behavior is mandatory for obtaining an unbi ased statistical view on th eir controlling root-causes. Aims. The present study provides an overview of semi-sinusoidal light curves observed by the CoRoT exo-field CCDs. Methods. We selected a sample of 4206 light curves presenting well-defined semi-si nusoidal signatures. Th e variability periods were computed based on Lomb-Scargle periodograms, harmonic fits, and visual inspection. Results. Color–period diagrams for the present sample show the trend of an increase of the variability periods as long as the stars evolve. This evolutionary behavior is also noticed when comparing the period distribution in the Galactic center and anti-center directions. These aspect s indicate a compatibility with stellar rotation, although more inform ation is needed to confirm their root- causes. Considering this possi bility, we identified a subset of th ree Sun-like candidates by their photometric peri od. Finally, the variability period versus color diagr am behavior was found to be highly depe ndent on the reddening correction.
Resumo:
Context. Be stars are rapidly rotating stars with a circumstellar decretion disk. They usually undergo pressure and/or gravity pulsation modes excited by the κ-mechanism, i.e. an effect of the opacity of iron-peak elements in the envelope of the star. In the Milky Way, p-modes are observed in stars that are hotter than or equal to the B3 spectral type, while g-modes are observed at the B2 spectral type and cooler. Aims. We observed a B0IVe star, HD51452, with the high-precision, high-cadence photometric CoRoT satellite and high-resolution, ground-based HARPS and SOPHIE spectrographs to study its pulsations in great detail. We also used the lower resolution spectra available in the BeSS database. Methods. We analyzed the CoRoT and spectroscopic data with several methods: Clean-NG, FreqFind, and a sliding window method. We also analyzed spectral quantities, such as the violet over red (V/R) emission variations, to obtain information about the variation in the circumstellar environment. We calculated a stellar structure model with the ESTER code to test the various interpretation of the results. Results. We detect 189 frequencies of variations in the CoRoT light curve in the range between 0 and 4.5 c d−1. The main frequencies are also recovered in the spectroscopic data. In particular we find that HD51452 undergoes gravito-inertial modes that are not in the domain of those excited by the κ-mechanism. We propose that these are stochastic modes excited in the convective zones and that at least some of them are a multiplet of r-modes (i.e. subinertial modes mainly driven by the Coriolis acceleration). Stochastically excited gravito-inertial modes had never been observed in any star, and theory predicted that their very low amplitudes would be undetectable even with CoRoT. We suggest that the amplitudes are enhanced in HD51452 because of the very rapid stellar rotation. In addition, we find that the amplitude variations of these modes are related to the occurrence of minor outbursts. Conclusions. Thanks to CoRoT data, we have detected a new kind of pulsations in HD51452, which are stochastically excited gravito-inertial modes, probably due to its very rapid rotation. These modes are probably also present in other rapidly rotating hot Be stars.