912 resultados para Minimal path convexity
Resumo:
This paper presents a path planning technique for ground vehicles that accounts for the dynamics of the vehicle, the topography of the terrain and the wheel/ground interaction properties such as friction. The first two properties can be estimated using well known sensors and techniques, but the third is not often estimated even though it has a significant effect on the motion of a high-speed vehicle. We introduce a technique which allows the estimation of wheel slip from which frictional parameters can be inferred. We present simulation results which show the importance of modelling topography and ground properties and experimental results which show how ground properties can be estimated along a 350m outdoor traverse.
Resumo:
This paper is directed towards providing an answer to the question, ”Can you control the trajectory of a Lagrangian float?” Being a float that has minimal actuation (only buoyancy control), their horizontal trajectory is dictated through drifting with ocean currents. However, with the appropriate vertical actuation and utilising spatio-temporal variations in water speed and direction, we show here that broad controllabilty results can be met such as waypoint following to keep a float inside of a bay or out of a designated region. This paper extends theory experimen- tally evaluted on horizontally actuated Autonomous Underwater Vehicles (AUVs) for trajectory control utilising ocean forecast models and presents an initial investi- gation into the controllability of these minimally actuated drifting AUVs. Simulated results for offshore coastal and within highly dynamic tidal bays illustrate two tech- niques with the promise for an affirmative answer to the posed question above.
Resumo:
Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot–shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot–shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC = 0.75–0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC = 0.68–0.99) than the inexperienced rater (ICC = 0.38–0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint – MDD90 = 2.17–9.36°, tarsometatarsal joint – MDD90 = 1.03–9.29° and the metatarsophalangeal joint – MDD90 = 1.75–9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear.
Resumo:
The Web Service Business Process Execution Language (BPEL) lacks any standard graphical notation. Various efforts have been undertaken to visualize BPEL using the Business Process Modelling Notation (BPMN). Although this is straightforward for the majority of concepts, it is tricky for the full BPEL standard, partly due to the insufficiently specified BPMN execution semantics. The upcoming BPMN 2.0 revision will provide this clear semantics. In this paper, we show how the dead path elimination (DPE) capabilities of BPEL can be expressed with this new semantics and discuss the limitations. We provide a generic formal definition of DPE and discuss resulting control flow requirements independent of specific process description languages.
Resumo:
In this paper, a hardware-based path planning architecture for unmanned aerial vehicle (UAV) adaptation is proposed. The architecture aims to provide UAVs with higher autonomy using an application specific evolutionary algorithm (EA) implemented entirely on a field programmable gate array (FPGA) chip. The physical attributes of an FPGA chip, being compact in size and low in power consumption, compliments it to be an ideal platform for UAV applications. The design, which is implemented entirely in hardware, consists of EA modules, population storage resources, and three-dimensional terrain information necessary to the path planning process, subject to constraints accounted for separately via UAV, environment and mission profiles. The architecture has been successfully synthesised for a target Xilinx Virtex-4 FPGA platform with 32% logic slices utilisation. Results obtained from case studies for a small UAV helicopter with environment derived from LIDAR (Light Detection and Ranging) data verify the effectiveness of the proposed FPGA-based path planner, and demonstrate convergence at rates above the typical 10 Hz update frequency of an autopilot system.
Resumo:
Exploiting wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.
Resumo:
Establishing a persistent presence in the ocean with an AUV to observe temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we propose a strategy that utilizes ocean model predictions to increase the autonomy and control of Lagrangian or profiling floats for precisely this purpose. An A* planner is applied to a local controllability map generated from predictions of ocean currents to compute a path between prescribed waypoints that has the highest likelihood of successful execution. The control to follow the planned path is computed by use of a model predictive controller. This controller is designed to select the best depth for the vehicle to exploit ambient currents to reach the goal waypoint. Mission constraints are employed to simulate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, and show surprising results in the ability of a Lagrangian float to reach a desired location.
Resumo:
The study of criminal career paths is necessary to understand the methods of success employed by high-performing criminals. The aim of this article is to focus on the career path of Jack Herbert who set up and maintained extensive corruption networks between organised crime groups and police in the Australian state of Queensland. This study builds on Morselli’s work on the career paths of Sammy Gravano and Howard Marks that demonstrate how understanding social networks is an essential part of comprehending how organised criminals succeed. The data for this study were taken from the transcripts of the Fitzgerald Commission of Inquiry, which uncovered the extensive and resilient corruption network operated by Herbert. Herbert’s relationships have been plotted to establish the nature of his operations. The findings indicate that communication of trust both allows for success and sets the boundaries of a network. Most importantly, this case study identifies Herbert’s reliance on holding a monopoly as the cornerstone of his network power and position. This article adds to the literature on criminal career paths by moving away from a classic organised criminal grouping into the area of police corruption and uncovers the distinctive opportunities that this position offers the career criminal.
Resumo:
Establishing a persistent presence in the ocean with an Autonomous Underwater Vehicle capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of Lagrangian profiling floats for such extended deployments. We propose a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy to achieve general control of this minimally-actuated underwater vehicle. We extend experimentally validated techniques for utilising ocean current models to control under-actuated autonomous underwater vehicles by presenting this investigation into the application of these methods on profiling floats. With the appropriate vertical actuation, and utilising spatiotemporal variations in water speed and direction, we show that broad controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution over a given duration. The computed depth plan is generated with a model predictive controller, and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, that show surprising results in the ability of a drifting vehicle to maintain a prescribed course and reach a desired location.
Resumo:
Metalloproteinases have been implicated in the pathogenesis of equine laminitis and other inflammatory conditions, through their role in the degradation and remodelling of the extracellular matrix environment. Matrix metalloproteinases (MMPs) and their inhibitors are present in normal equine lamellae, with increased secretion and activation of some metalloproteinases reported in horses with laminitis associated with systemic inflammation. It is unknown whether these enzymes are involved in insulin-induced laminitis, which occurs without overt systemic inflammation. In this study, gene expression of MMP-2, MMP-9, MT1-MMP, ADAMTS-4 and TIMP-3 was determined in the lamellar tissue of normal control horses (n = 4) and horses that developed laminitis after 48 h of induced hyperinsulinaemia (n = 4), using quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Protein concentrations of MMP-2 and MMP-9 were also examined using gelatin zymography in horses subject to prolonged hyperinsulinaemia for 6 h (n = 4), 12 h (n = 4), 24 h (n = 4) and 48 h (n = 4), and in normal control horses (n = 4). The only change in gene expression observed was an upregulation of MMP-9 (p < 0.05) in horses that developed insulin-induced laminitis (48 h). Zymographical analysis showed an increase (p < 0.05) in pro MMP-9 during the acute phase of laminitis (48 h), whereas pro MMP-2 was present in similar concentration in the tissue of all horses. Thus, MMP-2, MT1-MMP, TIMP-3 and ADAMTS-4 do not appear to play a significant role in the pathogenesis of insulin-induced laminitis. The increased expression of MMP-9 may be associated with the infiltration of inflammatory leukocytes, or may be a direct result of hyperinsulinaemia. The exact role of MMP-9 in basement membrane degradation in laminitis is uncertain as it appears to be present largely in the inactive form.
Resumo:
Visual sea-floor mapping is a rapidly growing application for Autonomous Underwater Vehicles (AUVs). AUVs are well-suited to the task as they remove humans from a potentially dangerous environment, can reach depths human divers cannot, and are capable of long-term operation in adverse conditions. The output of sea-floor maps generated by AUVs has a number of applications in scientific monitoring: from classifying coral in high biological value sites to surveying sea sponges to evaluate marine environment health.
Resumo:
Exploiting wind-energy is one possible way to extend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.
Resumo:
Spatial navigation requires the processing of complex, disparate and often ambiguous sensory data. The neurocomputations underpinning this vital ability remain poorly understood. Controversy remains as to whether multimodal sensory information must be combined into a unified representation, consistent with Tolman's "cognitive map", or whether differential activation of independent navigation modules suffice to explain observed navigation behaviour. Here we demonstrate that key neural correlates of spatial navigation in darkness cannot be explained if the path integration system acted independently of boundary (landmark) information. In vivo recordings demonstrate that the rodent head direction (HD) system becomes unstable within three minutes without vision. In contrast, rodents maintain stable place fields and grid fields for over half an hour without vision. Using a simple HD error model, we show analytically that idiothetic path integration (iPI) alone cannot be used to maintain any stable place representation beyond two to three minutes. We then use a measure of place stability based on information theoretic principles to prove that featureless boundaries alone cannot be used to improve localization above chance level. Having shown that neither iPI nor boundaries alone are sufficient, we then address the question of whether their combination is sufficient and - we conjecture - necessary to maintain place stability for prolonged periods without vision. We addressed this question in simulations and robot experiments using a navigation model comprising of a particle filter and boundary map. The model replicates published experimental results on place field and grid field stability without vision, and makes testable predictions including place field splitting and grid field rescaling if the true arena geometry differs from the acquired boundary map. We discuss our findings in light of current theories of animal navigation and neuronal computation, and elaborate on their implications and significance for the design, analysis and interpretation of experiments.